FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS

SEQUENCES, SERIES AND VECTOR CALCULUS

 ASMA2A1
EXAMINATION 2019

DATE:

NOVEMBER 2019
ASSESSOR: C MARAIS
MODERATOR: M ASKES
DURATION: 120 MINUTES
MARKS: 50

SURNAME AND INITIALS:

STUDENT NUMBER: \qquad

CONTACT NUMBER:

NUMBER OF PAGES:
 8

INSTRUCTIONS:
ANSWER ALL QUESTIONS IN PEN
SHOW NECESSARY WORKING AND CALCULATIONS YOU MAY USE A CALCULATOR
USE THE BLANK PAGES FOR ROUGH WORK
INDICATE IF YOU WANT WORK ON BLANK PAGES TO BE MARKED
GOOD LUCK!

Question 1-5
Choose the correct option for the multiple choice questions below and write your answer in the table provided

Question	Answer
1.	
2.	
3.	
4.	
5.	

1. Suppose a_{n} and b_{n} are sequences such that $0<a_{n} \leq b_{n}$. Which of the following statements are true?
a) If b_{n} is convergent, then so is a_{n}.
b) If b_{n} is divergent, then so is a_{n}.
c) If $\lim _{n \rightarrow \infty} b_{n}=0$ then $\lim _{n \rightarrow \infty} a_{n}=0$.
d) If $\lim _{n \rightarrow \infty} b_{n}=1$ then $\lim _{n \rightarrow \infty} a_{n}=1$.
e) None of these.
2. Suppose the series $\sum a_{n}$ is conditionally convergent. Choose the true statement:
a) $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1$
b) $\sum\left|a_{n}\right|^{n}$ is convergent.
c) a_{n} must be negative for infinitely many n.
d) $\lim _{n \rightarrow \infty} a_{n} \neq 0$
e) None of these.
3. The series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}\left(1+\frac{1}{n^{2}}\right)$ is
a) bounded but divergent.
b) unbounded and divergent.
c) absolutely convergent.
d) conditionally convergent.
e) None of these.
4. Suppose the power series $\sum_{n=0}^{\infty} c_{n}(x-3)^{n}$ is convergent at $x=5$. Then
a) the power series diverges at $x=0$.
b) the power series diverges at $x=1$.
c) the power series converges at $x=1$.
d) the power series converges at $x=2$.
e) None of these.
5. The sum of the power series $\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n}}{n!}$ is
a) $e^{-x^{2}}$
b) $\cos x$
c) $1-e^{-x^{2}}$
d) $e^{-x^{2}}-1$
e) None of these.

Question 6-9
Determine whether the following statements are true or false. If true, give a short justification. If false, give a counter example.
6. A sequence, a_{n}, is bounded if and only if there exists a real number k such that $\left|a_{n}\right|<k$ for all $n \in \mathbb{N}$.
7. The constant sequence, $a_{n}=c$, for all $n \in \mathbb{N}$ and some $c \in \mathbb{R}$ converges to c
8. Every unbounded sequence is monotone.

TRUE
FALSE
9. If a_{n} is a divergent sequence, then $\left|a_{n}\right|$ is also a divergent sequence.

Question 10
Find the sum of the series $\sum_{n=2}^{\infty} \frac{6}{n(n+3)}=\sum_{n=2}^{\infty} \frac{2}{n}-\frac{2}{(n+3)}$.

Question 11
Determine whether the series $\sum_{n=2}^{\infty} \frac{(-1)^{2}}{\sqrt{n} \ln n}$ is absolutely convergent, conditionally convergent, or divergent.

Question 12
Consider the series $f(x)=\sum_{n=0}^{\infty} \frac{n+1}{3^{n+1}} x^{n}$ and answer the questions below:
a) Find the radius and interval of convergence of the given series.
b) Find the power series representation of $f^{\prime}(x)$ and its radius of convergence.

Question 13
Find an equation for the tangent line to the curve $\mathbf{r}(t)=\left\langle e^{t}, t e^{t}, t^{2} e^{t}\right\rangle$ at the point (e, e, e).

Question 14

a) Consider the curve $\mathbf{r}(t)=\left\langle e^{-t} \cos (2 t), e^{-1} \sin (2 t)\right\rangle$. Calculate the arc length of the curve between the points $(1,0)$ and $\left(e^{\pi}, 0\right)$
b) Let $a>b>0$. Find the curvature of the ellipse $\mathbf{r}(t)=\langle a \cos t, b \sin t\rangle$ at the point $(a, 0)$.

Question 15
a) Find the unit tangent vector, \mathbf{T}, and the principle unit normal vector, \mathbf{N}, of the curve with parametrisation $\mathbf{r}(t)=\langle 3 \sin t, 3 \cos t, 4 t\rangle$.
b) Find the tangential component of the acceleration vector of a particle with position function $\mathbf{r}(t)=\left\langle 2 t, t^{2}, \frac{1}{3} t^{3}\right\rangle$.
a) State and prove the Direct Comparison Test for convergent series.
b) Let C be a smooth curve defined by the vector function \mathbf{r}. Prove that the curvature κ of C is given by the formula $\kappa=\frac{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|^{3}}$.

