

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS

SEQUENCES, SERIES AND VECTOR CALCULUS ASMA2A1

EXAMINATION 2019

ASSESSOR: C MARAIS

MODERATOR: MASKES

DURATION: 120 MINUTES

MARKS: 50

SURNAME AND INITIALS:.....

STUDENT NUMBER:.....

CONTACT NUMBER:....

NUMBER OF PAGES: 8

INSTRUCTIONS: ANSWER ALL QUESTIONS IN PEN SHOW NECESSARY WORKING AND CALCULATIONS YOU MAY USE A CALCULATOR USE THE BLANK PAGES FOR ROUGH WORK INDICATE IF YOU WANT WORK ON BLANK PAGES TO BE MARKED GOOD LUCK!

EXAMINATION

ASMA2A1

Question 1 - 5

Choose the correct option for the multiple choice questions below and write your answer in the table provided

Question	Answer
1.	
2.	
3.	
4.	
5.	

- 1. Suppose a_n and b_n are sequences such that $0 < a_n \le b_n$. Which of the following statements are true?
 - a) If b_n is convergent, then so is a_n .
 - b) If b_n is divergent, then so is a_n .
 - c) If $\lim_{n\to\infty} b_n = 0$ then $\lim_{n\to\infty} a_n = 0$.
 - d) If $\lim_{n\to\infty} b_n = 1$ then $\lim_{n\to\infty} a_n = 1$. e) None of these.
- 2. Suppose the series $\sum a_n$ is conditionally convergent. Choose the true statement:

a)
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$$

- b) $\sum |a_n|$ is convergent.
- c) a_n must be negative for infinitely many n.
- d) $\lim a_n \neq 0$
- e) None of these.

3. The series
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^n}{\sqrt{n}} \left(1 + \frac{1}{n^2}\right)$$
 is

- a) bounded but divergent.
- b) unbounded and divergent.
- c) absolutely convergent.
- d) conditionally convergent.
- e) None of these.

4. Suppose the power series $\sum_{n=1}^{\infty} c_n (x-3)^n$ is convergent at x=5. Then a) the power series diverges at x = 0.

is

- b) the power series diverges at x = 1.
- c) the power series converges at x = 1.
- d) the power series converges at x = 2.
- e) None of these.

5. The sum of the power series
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^{2n}}{n!}$$

- a) e^{-x^2}
- b) $\cos x$
- c) $1 e^{-x^2}$
- d) $e^{-x^2} 1$
- e) None of these.

[5]

ASMA2A1

Question 6 - 9

Determine whether the following statements are true or false. If true, give a short justification. If false, give a counter example.

6. A sequence, a_n , is bounded if and only if there exists a real number k such that $|a_n| < k$ for all $n \in \mathbb{N}$. [2]

	TRUE	
	FALSE	

7.	The constant sequence, $a_n = c$, for all $n \in \mathbb{N}$ and some $c \in \mathbb{R}$ converges to c		[2]
		TRUE	
		FALSE	

8. Every unbounded sequence is monotone.

	[2]
TRUE	
FALSE	

- - -

9.	If a_n is a divergent sequence, then $ a_n $ is also a divergent sequence.	[2]	
		TRUE	
		FALSE	

ASMA2A1 <u>Question 10</u> Find the sum of the series $\sum_{n=2}^{\infty} \frac{6}{n(n+3)} = \sum_{n=2}^{\infty} \frac{2}{n} - \frac{2}{(n+3)}$.

EXAMINATION

[4]

[4]

Question 11 Determine whether the series $\sum_{n=2}^{\infty} \frac{(-1)^2}{\sqrt{n \ln n}}$ is absolutely convergent, conditionally convergent, or divergent.

ASMA2A1 Question 12

Consider the series $f(x) = \sum_{n=0}^{\infty} \frac{n+1}{3^{n+1}} x^n$ and answer the questions below:

a) Find the radius and interval of convergence of the given series.

[5]

b) Find the power series representation of f'(x) and its radius of convergence.

[2]

ASMA2A1

Question 13
Find an equation for the tangent line to the curve
$$\mathbf{r}(t) = \langle e^t, te^t, t^2e^t \rangle$$
 at the point (e, e, e) . [3]

Question 14

a) Consider the curve $\mathbf{r}(t) = \langle e^{-t} \cos(2t), e^{-1} \sin(2t) \rangle$. Calculate the arc length of the curve between the points (1,0)and $(e^{\pi}, 0)$ [4] b) Let a > b > 0. Find the curvature of the ellipse $\mathbf{r}(t) = \langle a \cos t, b \sin t \rangle$ at the point (a, 0).

[4]

[2]

Question 15 a) Find the unit tangent vector, **T**, and the principle unit normal vector, **N**, of the curve with parametrisation $\mathbf{r}(t) = \langle 3\sin t, 3\cos t, 4t \rangle$.

b) Find the tangential component of the acceleration vector of a particle with position function $\mathbf{r}(t) = \left\langle 2t, t^2, \frac{1}{3}t^3 \right\rangle$. [2]

a) State and prove the Direct Comparison Test for convergent series.

[4]

b) Let *C* be a smooth curve defined by the vector function \mathbf{r} . Prove that the curvature κ of *C* is given by the formula $\kappa = \frac{\left|\mathbf{r}'(t) \times \mathbf{r}''(t)\right|}{\left|\mathbf{r}'(t)\right|^{3}}.$ [4]