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Question 1 [10 marks]

For questions 1.1 - 1.10, choose one correct answer, and make a cross (X) in the correct block.

Question a b c d e

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10

1.1 The negation of the following quantified statement (∀x ∈ R)(x > 0→ x2 > x) is: (1)

(a) (∃x ∈ R)(x > 0→ x2 < x)

(b) (∃x ∈ R)(x < 0 ∧ x2 ≥ x)

(c) (∃x ∈ R)(x < 0 ∨ x2 > x)

(d) (∃x ∈ R)(x > 0 ∧ x2 ≤ x)

(e) None of the above

1.2 Which one of the following first-order statements is true? (1)

(a) (∀x ∈ R)(x2 = x)

(b) (∃x ∈ R)(x2 = x)

(c) (∀x ∈ R)(x2 > x)

(d) (∀x ∈ Z+)(x2 > x)

(e) None of the above

1.3 The expansion of
5∑

k=3

(−1)k
2k

k
is: (1)

(a) −7
4

+ 3− 34
6

(b) −8
3

+ 4− 32
5

(c) 9
2
− 2 + 32

2

(d) 4− 3
8

+ 4

(e) None of the above
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1.4 1 + cot2 θ = (1)

(a) csc2 θ

(b) sec2 θ

(c) tan2 θ

(d) 1− sin2 θ

(e) None of the above

1.5 Solving |x+ 5| ≥ 7 yields (1)

(a) x ≤ −12 or x ≥ 2

(b) −12 ≤ x ≤ 2

(c) x ≤ −10 or x ≥ 4

(d) x ≤ 14 or x ≥ −6

(e) None of the above

1.6 If f(x) = x3 − 1, g(x) = 3
√
x2 − 1 and h(x) =

√
x+ 2, then (f ◦ g ◦ h)(x) equals: (1)

(a) 1

(b) −1

(c) x

(d) 5
√

(x3 − 1)2 − 1

(e) None of the above

1.7 Find the limit: lim
x→0

(
sin π

π

)
(1)

(a) 1

(b) 0

(c) ∞

(d) π

(e) None of these



ASMA1A1 EXAM - NOVEMBER 2019 4/13

1.8 If y = 5 ln(5x) then
dy

dx
= (1)

(a) 25
x

(b) 5
x

(c) 1
x

(d) 1
5x

(e) None of the above

1.9
d2

dx2
(xex) = (1)

(a) (x+ 1)ex

(b) (2x+ 1)ex

(c) (x+ 2)ex

(d) 2xex

(e) None of the above

1.10 The value of the definite integral

∫ 25

1

2√
x
dx is: (1)

(a) 16

(b) 4

(c) 8

(d) 32

(e) None of the above

Question 2 [9 marks]

(a) If f is the function defined below, determine whether f is even, odd or neither:

f(x) = 2− 3 cosx

(2)
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(b) Solve for x:
x

x2 + 2x− 3
≤ − 2

x2 + 2x− 3

(3)

(c) Determine the inverse of f(x) = 3 ln(1− ex) and find the domain of f−1(x). (4)
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Question 3 [4 marks]

Prove that n2 − n+ 5 is odd for all integers n.

Question 4 [4 marks]

(a) Translate the following sentence into first-order language (1)

“The cube of any real number is less than its square”

(b) Negate your answer in (a) and leave the result in natural language (2)

(c) Is the statement in (b) true or false? (1)
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Question 5 [8 marks]

Determine:

(a) lim
x→−2

x4 − 16

x+ 2
(2)

(b) lim
x→−∞

√
4x6 − x
x3 + 5

(3)
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(c) lim
x→0

x4 cos

(
3

x

)
(3)

Question 6 [6 marks]

(a) Sketch

f(x) =

{
e−x if x < 0

tanx if 0 ≤ x ≤ π

(3)
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(b) Show by calculation that f(x) is discontinuous at x = 0. (2)

(c) Is f(x) differentiable at x = 0? Explain. (1)

Question 7 [3 marks]

If f(x) =
1

3
√
x

determine f ′(x) by making use of first principles.
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Question 8 [7 marks]

(a) Find the equation of the tangent line to the curve at the given point (3)

x3 + 3xy + y3 = 5, (1, 1)

(b) Find
dy

dx
if y =

x
3
7 (4x− 1)5(3x− 2)7√

x2 − 1
by using logarithmic differentiation. (4)
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Question 9 [4 marks]

Use L’Hospital’s Rule to evaluate the following limit:

lim
x→∞

(x2 + 9)1/x
2
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Question 10 [10 marks]

Evaluate the following:

(a)

∫ 4

1

y −√y
y2

dy (3)

(b)

∫ 2

1

x
√
x− 1 dx (3)
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(c)
d

dx

∫ π
4

secx

tan t dt (4)

Question 11 [5 marks]

Prove the Product Rule, that is:

d

dx
[f(x)g(x)] = f(x)

d

dx
[g(x)] + g(x)

d

dx
[f(x)]


