

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS

DISCRETE MATHEMATICS FOR IT

ASMA2A4

SUPPLEMENTARY EXAMINATION 2019

DATE:	JANUARY 2020				
ASSESSOR:	C MARAIS				
MODERATOR:	S RICHARDSON				
DURATION:	120 MINUTES	MARKS: 50			
SURNAME AND INITIALS:					
STUDENT NUMBER:					
CONTACT NUMBER:					
NUMBER OF PAGES:	9				
INSTRUCTIONS:	ANSWER ALL QUESTIONS IN PEN SHOW NECESSARY WORKING AND CALCULATIONS YOU MAY USE A CALCULATOR USE THE BLANK PAGES FOR ROUGH WORK INDICATE IF YOU WANT WORK ON BLANK PAGES TO BE MARKED GOOD LUCK!				

ASMA2A4	SUPPLEMENTARY EXAMINATION	
Question 1		
Consider a propositional language where		
 <i>p</i> means "Aldo is Italian" <i>q</i> means "Bob is English" 		
Formalise the following sentences writing them as propositional formula using logical connect	ives:	
a) "Aldo is Italian or if Aldo isn't Italian then Bob is English."	[1]	
b) "Either Aldo is Italian and Bob is English, or neither Aldo is Italian nor Bob is English."	[1]	

c) Negate the formula in B) and write it in negation normal form.

Question 2

Use the t	ruth table	e below to	o verify whether the following logical equivalence holds: $(p \land q) \lor r \equiv (p \to \neg q) \to r$	[3]
р	q	r		
Т	Т	Т		
Т	Т	F		
Т	F	Т		
Т	F	F		
F	Т	Т		
F	Т	F		
F	F	Т		
F	F	F		

[2]

ASMA2A4

Question 3

Use Semantic Tableau to verify whether the following formula is valid:

[4]

 $\exists x (P(x) \lor Q(x)) \to (\exists x P(x) \lor \exists x Q(x))$

Question 4

Write the following formula in prenex conjunctive normal form:

$$\exists z (\exists x Q(x,z) \lor \exists x P(x)) \to \neg (\neg \exists x P(x) \land \forall x \exists z Q(z,x))$$

Question 5

a) An automobile manufacturer has four colours available for automobile exteriors and three for interiors. How many different color combinations can he produce?
 [1]

b) A lady wishes to colour her fingernails on one hand using exactly two of the colours red, yellow, and blue. How many ways can she do this?
 [2]

ASMA2A4 Question 6 What is the coefficient of x^3y^4 in $(5x-2y)^7$?

[3]

Question 7

How many cards must be drawn from a standard deck of cards consisting of 52 cards (13 of each of 4 suits) to be sure that you draw at least two cards of the same suit? [1]

Question 8

At a university, 14 students signed up for Discrete Mathematics, 12 students signed up for Linear Algebra, and 6 students signed up for both courses. How many of the students signed up for at least one of the two courses? [3]

ASMA2A4 $\underline{\text{Question 9}}$ Find the remainder when 11^{2402} is divided by $3000\,.$

[3]

[4]

Question 10

a) Use Euclid's algorithm to find gcd(684,589) and write this as a linear combination, i.e. find u and v such that gcd(684,589) = 684u + 589v.

b) Find the general solution of the Diophantine equation, 598x - 684y = 247, $x, y \in \mathbb{Z}$. [3]

c) Solve the linear congruence, $589x \equiv 247 \pmod{684}$.

[4]

Question 11 Use the Chinese Remainder Theorem to solve the following system of congruences:

 $x \equiv 3 \pmod{5}$ $x \equiv 4 \pmod{6}$ $x \equiv 5 \pmod{7}$

ASMA2A4

Question 12

Consider an RSA cryptosystem with $n = 421 \times 401$ and e = 247. Give (but do not solve) the congruence that you would use to find a decode exponent d. Simplify this congruence where possible. [2]

<u>Question 13</u> Prove the following theorems: a) Every natural number greater than 1 has a prime divisor.

[3]

ASMA2A4

b) There are infinitely many prime numbers.