FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS

DISCRETE MATHEMATICS FOR IT

ASMA2A4

SUPPLEMENTARY EXAMINATION 2019

DATE:

ASSESSOR: C MARAIS
MODERATOR: S RICHARDSON
DURATION:
120 MINUTES
MARKS: 50

SURNAME AND INITIALS:

STUDENT NUMBER: \qquad

CONTACT NUMBER:
\qquad

NUMBER OF PAGES:
INSTRUCTIONS:

9

ANSWER ALL QUESTIONS IN PEN
SHOW NECESSARY WORKING AND CALCULATIONS
YOU MAY USE A CALCULATOR
USE THE BLANK PAGES FOR ROUGH WORK
INDICATE IF YOU WANT WORK ON BLANK PAGES TO BE MARKED GOOD LUCK!

Question 1
Consider a propositional language where

- $\quad p$ means "Aldo is Italian"
- $\quad q$ means "Bob is English"

Formalise the following sentences writing them as propositional formula using logical connectives:
a) "Aldo is Italian or if Aldo isn't Italian then Bob is English."
b) "Either Aldo is Italian and Bob is English, or neither Aldo is Italian nor Bob is English."
c) Negate the formula in B) and write it in negation normal form.

Question 2

Use the truth table below to verify whether the following logical equivalence holds: $(p \wedge q) \vee r \equiv(p \rightarrow \neg q) \rightarrow r$

| p | q | r | |
| :---: | :---: | :---: | :---: | :---: |
| T | T | T | |
| T | T | F | |
| T | F | T | |
| T | F | F | |
| F | T | T | |
| F | T | F | |
| F | F | T | |
| F | F | F | |

\therefore

$$
\exists x(P(x) \vee Q(x)) \rightarrow(\exists x P(x) \vee \exists x Q(x))
$$

Question 4
Write the following formula in prenex conjunctive normal form:

$$
\exists z(\exists x Q(x, z) \vee \exists x P(x)) \rightarrow \neg(\neg \exists x P(x) \wedge \forall x \exists z Q(z, x))
$$

Question 5

a) An automobile manufacturer has four colours available for automobile exteriors and three for interiors. How many different color combinations can he produce?
b) A lady wishes to colour her fingernails on one hand using exactly two of the colours red, yellow, and blue. How many ways can she do this?

Question 6
What is the coefficient of $x^{3} y^{4}$ in $(5 x-2 y)^{7} ?$

Abstract

Question 7 How many cards must be drawn from a standard deck of cards consisting of 52 cards (13 of each of 4 suits) to be sure that you draw at least two cards of the same suit?

Question 8

At a university, 14 students signed up for Discrete Mathematics, 12 students signed up for Linear Algebra, and 6 students signed up for both courses. How many of the students signed up for at least one of the two courses?

Question 10
a) Use Euclid's algorithm to find $\operatorname{gcd}(684,589)$ and write this as a linear combination, i.e. find u and v such that $\operatorname{gcd}(684,589)=684 u+589 v$.
b) Find the general solution of the Diophantine equation, $598 x-684 y=247, \quad x, y \in \mathbb{Z}$.
c) Solve the linear congruence, $589 x \equiv 247(\bmod 684)$.

Question 11
Use the Chinese Remainder Theorem to solve the following system of congruences:

$$
\begin{aligned}
& x \equiv 3(\bmod 5) \\
& x \equiv 4(\bmod 6) \\
& x \equiv 5(\bmod 7)
\end{aligned}
$$

Consider an RSA cryptosystem with $n=421 \times 401$ and $e=247$. Give (but do not solve) the congruence that you would use to find a decode exponent d. Simplify this congruence where possible.

Question 13
Prove the following theorems:
a) Every natural number greater than 1 has a prime divisor.
b) There are infinitely many prime numbers.

