

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS

DISCRETE MATHEMATICS FOR IT

ASMA2A4

EXAMINATION 2019

DATE:	NOVEMBER 2019			
ASSESSOR:	C MARAIS			
MODERATOR:	S RICHARDSON			
DURATION:	120 MINUTES	MARKS: 50		
SURNAME AND INITIALS:				
STUDENT NUMBER:				
CONTACT NUMBER:				
NUMBER OF PAGES:	9			
INSTRUCTIONS:	ANSWER ALL QUESTIONS IN PEN SHOW NECESSARY WORKING AND CALCU YOU MAY USE A CALCULATOR USE THE BLANK PAGES FOR ROUGH WOR INDICATE IF YOU WANT WORK ON BLANK I GOOD LUCK!	LATIONS K PAGES TO BE MARKED		

ASMA2A4 Question 1	EXAMINATION				
Consider a propositional language where					
 <i>p</i> means "Paula is happy" <i>q</i> means "Paula paints a picture" <i>r</i> means "Renzo is happy". 					
Formalise the following sentences writing them as propositional formula using logical connectives: a) "If Paula is happy and paints a picture, then Renzo isn't happy."					
b) "Paula is happy only if she paints a picture or Renzo is happy."	[1]				
c) Negate the formula in a) and write it in negation normal form.	[2]				
	[-]				

Question 2

Use the	truth table	e below to	o verify whether the following logical argument is sound: $p \lor (\neg q \land r) \vDash q \lor \neg r o p$	[3]
р	q	r		
Т	Т	Т		
Т	Т	F		
Т	F	Т		
Т	F	F		
F	Т	Т		
F	Т	F		
F	F	Т		
F	F	F		

[4]

Question 3

Use Semantic Tableau to verify whether the following argument form is valid:

 $\exists x (P(x) \to Q(x)); \exists x P(x) \vDash \exists x Q(x)$

Write the following formula in prenex conjunctive normal form:

[4]

 $\exists z (\exists x Q(x,z) \lor \exists x P(x)) \to \neg (\neg \exists x P(x) \land \forall x \exists z Q(z,x))$

Question 5

a) In a digital computer, a bit is one of the integers $\{0,1\}$, and a word is any string of 32 bits. How many different words are possible? [1]

b) A die is rolled 30 times. What is the probability that a 6 turns up exactly 5 times?

[2]

ASMA2A4 Question 6 What is the coefficient of x^4y^3 in $(5x+2y)^7$?

[3]

Question 7

Two people share the same birthday if it is on the same day and month of the year. If we ignore leap days, how many people need to be in a group to guarantee that at least two people will share the same birthday? [1]

Question 8

At a university, 14 students signed up for Discrete Mathematics, 12 students signed up for Linear Algebra, and 6 students signed up for both courses. How many of the students signed up for at least one of the two courses? [2]

<u>Question 9</u> Find the general solution of the Diophantine equation, 33x - 21y = 15, $x, y \in \mathbb{Z}$. [4]

Question 10

a) Use Euclid's algorithm to find gcd(381,408) and write this as a linear combination, i.e. find u and v such that gcd(381,408) = 381u + 408v.

[4]

b) Solve the following congruence or explain why no solution exists: $381x \equiv 231 \pmod{408}$.

[3]

[4]

Question 11 Use the Chinese Remainder Theorem to solve the following system of congruences:

 $x \equiv 2 \pmod{5}$ $x \equiv 4 \pmod{7}$ $x \equiv 1 \pmod{8}$

7

Question 12

Consider an RSA cryptosystem with $n = 11 \times 13 = 143$ and e = 7, i.e. the public key is (143; 7). Determine d in the corresponding private key (143; d). [4]

<u>Question 13</u> Prove the following theorems: a) Every natural number greater than 1 has a prime divisor.

[3]

b) There are infinitely many prime numbers.