FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS

DISCRETE MATHEMATICS FOR IT

ASMA2A4

EXAMINATION 2019

DATE:	NOVEMBER 2019
ASSESSOR:	C MARAIS
MODERATOR:	S RICHARDSON
DURATION:	$\mathbf{1 2 0}$ MINUTES

SURNAME AND INITIALS:

STUDENT NUMBER: \qquad

CONTACT NUMBER:
\qquad

NUMBER OF PAGES:
INSTRUCTIONS:

9

ANSWER ALL QUESTIONS IN PEN SHOW NECESSARY WORKING AND CALCULATIONS YOU MAY USE A CALCULATOR
USE THE BLANK PAGES FOR ROUGH WORK
INDICATE IF YOU WANT WORK ON BLANK PAGES TO BE MARKED GOOD LUCK!

Question 1
Consider a propositional language where

- $\quad p$ means "Paula is happy"
- q means "Paula paints a picture"
- $\quad r$ means "Renzo is happy".

Formalise the following sentences writing them as propositional formula using logical connectives:
a) "If Paula is happy and paints a picture, then Renzo isn't happy."
b) "Paula is happy only if she paints a picture or Renzo is happy."
c) Negate the formula in a) and write it in negation normal form.

Question 2

Use the truth table below to verify whether the following logical argument is sound: $p \vee(\neg q \wedge r) \vDash q \vee \neg r \rightarrow p$

p	q	r	
T	T	T	
T	T	F	
T	F	T	
T	F	F	
F	T	T	
F	T	F	
F	F	T	
F	F	F	

\therefore

$$
\exists x(P(x) \rightarrow Q(x)) ; \exists x P(x) \vDash \exists x Q(x)
$$

Write the following formula in prenex conjunctive normal form:

$$
\exists z(\exists x Q(x, z) \vee \exists x P(x)) \rightarrow \neg(\neg \exists x P(x) \wedge \forall x \exists z Q(z, x))
$$

Question 5

a) In a digital computer, a bit is one of the integers $\{0,1\}$, and a word is any string of 32 bits. How many different words are possible?
b) A die is rolled 30 times. What is the probability that a 6 turns up exactly 5 times?

Question 6

What is the coefficient of $x^{4} y^{3}$ in $(5 x+2 y)^{7}$?

Question 7

Two people share the same birthday if it is on the same day and month of the year. If we ignore leap days, how many people need to be in a group to guarantee that at least two people will share the same birthday?

Question 8

At a university, 14 students signed up for Discrete Mathematics, 12 students signed up for Linear Algebra, and 6 students signed up for both courses. How many of the students signed up for at least one of the two courses?

Question 10

a) Use Euclid's algorithm to find $\operatorname{gcd}(381,408)$ and write this as a linear combination, i.e. find u and v such that $\operatorname{gcd}(381,408)=381 u+408 v$.
b) Solve the following congruence or explain why no solution exists: $381 x \equiv 231(\bmod 408)$.

Question 11

Use the Chinese Remainder Theorem to solve the following system of congruences:

$$
\begin{aligned}
& x \equiv 2(\bmod 5) \\
& x \equiv 4(\bmod 7) \\
& x \equiv 1(\bmod 8)
\end{aligned}
$$

Question 12
Consider an RSA cryptosystem with $n=11 \times 13=143$ and $e=7$, i.e. the public key is (143; 7). Determine d in the corresponding private key (143; d).

Question 13
Prove the following theorems:
a) Every natural number greater than 1 has a prime divisor.
b) There are infinitely many prime numbers.

