$\underline{\text { PROGRAM }}$	$:$ NATIONAL DIPLOMA ENGINEERING
	METALLURGY
$\underline{\text { SUBJECT }}$	$:$ PHYSICAL METALLURGY II
$\underline{\text { CODE }}$	$:$ PMY 22-2
$\underline{\text { DATE }}$	$:$11 JUNE 2019
$\underline{\text { DURATION }}$	$: 40: 60$
$\underline{\text { WEIGHT }}$	$: 100$

EXAMINER	$:$ MR L G JUGANAN
MODERATOR	$:$ MR SR SEFOKA
NUMBER OF PAGES	$: 3$

INSTRUCTIONS : ANSWER ALL QUESTIONS. CALCULATORS PERMITTED (ONE PER STUDENT)

Question 1
Explain how you would obtain a 50% pearlite- 50% ferrite microstructure in a plain C steel.

Question 2
Discuss polarization as it occurs in electrochemical corrosion using suitable examples.

Question 3

Compare and contrast ferritic and austenitic stainless steels.

Question 4

Use a spider diagram to show the development of a heat resisting 310 stainless steel.

Question 5

State the effect of alloying elements and microstructure on the DBTT in high strength BCC steel.

Question 6

Show how a 100\% martensitic structure is obtained for SAE4340.

Design a heat treatment to produce a uniform microstructure of 36\% primary ferrite and balance pearlite and hardness of HRC 23 for a 1050 steel.

Question 8

With the aid of a sketch explain the three stages of Creep in metals as a high temperature problem.

Question 9

Write brief notes on heat treatment of cast irons.

