

PROGRAM	:	BACHELOR OF ENGINEERING TECHNOLOGY
		CHEMICAL ENGINEERING
SUBJECT	:	MULTISTAGE OPERATIONS 3A
<u>CODE</u>	:	MSOCHA3
DATE	:	WINTER EXAMINATION
		04 JUNE 2019
DURATION	:	(SESSION 2) 12:30 - 15:30
<u>WEIGHT</u>	:	40 : 60
TOTAL MARKS	:	100
EXAMINER(S)	:	Mr G PAHLA and PROF K MOOTHI
MODERATOR	:	Prof G SIMATE
NUMBER OF PAGES	:	06 PAGES
REQUIREMENTS	:2	2 Sheets Graph Paper

HINTS AND INSTRUCTIONS TO CANDIDATE(S):

- Purpose of this assessment is to determine whether you can analyse a broadly-defined problem, identify relevant engineering principles and apply them to solve the problem. Set out your solutions in a logical and concise manner with justification for the steps that you follow.
- ATTEMPT <u>ALL</u> QUESTIONS. Please answer each question to the best of your ability.
- Write your details (module name and code, ID number, student number etc.) on script(s).
- Number each question clearly; questions may be answered in any order.
- Make sure that you <u>read each question carefully</u> before attempting to answer the question.
- Show all steps (and units) in calculations; this is a 'closed book' test.
- Ensure your responses are <u>legible</u>, <u>clear</u> and <u>include relevant units</u> (where appropriate).

Question One: 33 Marks [This question assesses Graduate Attribute 1. It is compulsory]

You are required to design a fractionating column for the separation of a liquid mixture containing; 40 kmol hexane, 35 kmol heptane and 25 kmol octane. The hydrocarbon mixture is at its bubble point. The operation should recover 97.15 % of heptane in the distillate and the percentage of octane in the bottom stream should be 96 %. If the feed flow rate is 100 kmol per hour and the column is to operate at 70 % overall efficiency, estimate the actual number of equilibrium plates required. $R = 1.4 R_{min}$

The average relative volatilities with respect to Octane are; 2.70 and 2.22 respectively.

Question Two

100 kmol/h of a gas mixture containing 85 mol% CH₄, 6% C₂H₆, 5% C₃H₈ and 4% n-C₄H₁₀ is fed to a absorption tower operating at 37°C and 6 000 kPa. 80% of C₃H₈ has to be removed from the gas mixture using Lean oil. The oil composition is 0,5 mol% C₄H₁₀ and it is non-volatile under these conditions. Given that the flow ratio of inlet gas to lean oil is 0.5, determine the flowrate of C₁ and C₄ in the exit streams

K values are as follows: $CH_4 = 32$; $C_2H_6 = 6,7$; $C_3H_8 = 2,4$; $n \pm C_4H_{10} = 0,74$.

Question Three

A solution containing 23 mass % Na_3PO_4 is cooled from 313 K to 298 K in a Swenson-Walker crystalliser to form crystals of $Na_3PO_4.12$ H₂O. The solubility of Na_3PO_4 at 298 K is 15,5 kg/100 kg water. Calculate the crystal yield per 1 kg of feed.

[Molar Mass: Na = 23 g/mol, P = 31 g/mol]

Question Four: 32 Marks [This question assesses Graduate Attribute 1. It is compulsory]

Acetone is to be recovered from a 50 wt% aqueous solution using multistage cross-current extraction with trichloroethane (TCA) as the solvent. The feed is 500 kg/h and the final rafinate should contain not more than 9 wt% Acetone. 200 kg of solvent containing 2% Acetone is added to each stage. The Equilibrium data is given in Table 1.

Raffinate an	Raffinate arm (mass fraction)		Extract a	Extract arm (mass fraction)		
Xc	XA	XB	Уc	УА	Ув	
0.55	0.35	0.10	0.60	0.13	0.27	
0.50	0.43	0.07	0.50	0.04	0.46	
0.40	0.57	0.03	0.40	0.03	0.57	
0.30	0.68	0.02	0.30	0.02	0.68	
0.20	0.79	0.01	0.20	0.015	0.785	
0.10	0.895	0.005	0.10	0.01	0.89	

Table 1: Equilibrium Data

[Total: 20 Marks]

[Total: 15 Marks]

Tie Line Data			
Raffinate	Extract		
0.12	0.18		
0.29	0.40		
0.44	0.56		

4.1. Determine the required number of equilibrium stages. **[25]**

4.2. Determine the total amount of Acetone extracted. [7]

END

[Total: 100 Marks]

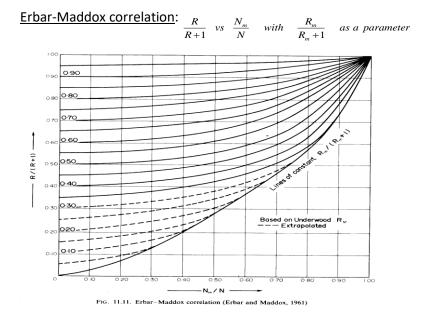
USEFUL EQUATIONS AND FORMULAE

McCabe-Thiele Method:
$$y_1 = \frac{\alpha_{1,2}(x_1)}{1 + (x_1)(\alpha_{1,2} - 1)}$$

$$y_q = \frac{q}{q-1} x_q - \frac{z_f}{q-1}$$

Fenske's Equation(s):

$$N_{\min} + 1 = \frac{\log\left[\left(\frac{x_{LK}}{x_{HK}}\right)_{D}\left(\frac{x_{HK}}{x_{LK}}\right)_{B}\right]}{\log \alpha_{LK,HK}}, \quad b_{i} = \frac{f_{i}}{1 + \left(\frac{d_{r}}{b_{r}}\right)(\alpha_{i,r})_{m}^{N_{\min}}}, \quad d_{i} = \frac{f_{i}\left(\frac{d_{r}}{b_{r}}\right)(\alpha_{i,r})_{m}^{N_{\min}}}{1 + \left(\frac{d_{r}}{b_{r}}\right)(\alpha, r)_{m}^{N_{\min}}}$$

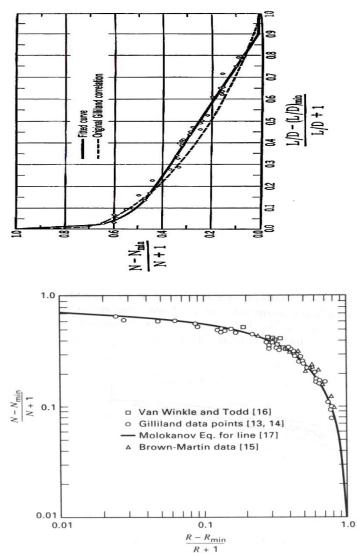

Minimum Reflux Ratio by Underwood's Equation(s):

$$\sum \frac{\alpha_i x_{iD}}{\alpha - \theta} = R_m + 1 \qquad \qquad \alpha_{HK} < \theta < \alpha_{LK}$$
$$\sum \frac{\alpha_i x_{iF}}{\alpha - \theta} = 1 - q$$

Feed Plate Location by Kirkbride's Equation(s):

$$\log\left[\frac{N_r}{N_s}\right] = 0.026 \log\left[\frac{W}{D}\left(\frac{x_{HK}}{x_{LK}}\right)_F \left(\frac{x_{LKW}}{x_{HKD}}\right)^2\right], \qquad \frac{N_R}{N_s} = \left[\left(\frac{Z_{j,F}}{Z_{i,F}}\right)\left(\frac{x_{i,B}}{x_{j,D}}\right)^2 \left(\frac{B}{D}\right)\right]^{0.206}$$

_



Bubble and Dew point calculation(s):

$$\sum y_i = \sum K_i x_i = K_c \sum \alpha_i x_i = 1.0, \qquad y_i = \frac{\alpha_i x_i}{\sum (\alpha_i x_1)}, \qquad \sum_{i=1}^{N_c} y_i = \sum_{i=1}^{N_c} K_i x_i = 1.0, \qquad (K_p) Trial 2 = \frac{(K_p) Trial 1}{\sum K_i x_i}$$

$$\sum x_i = \sum \left(\frac{y_i}{K_i}\right) = \left(\frac{1}{K_c}\right) \sum \left(\frac{y_i}{\alpha_1}\right) = 0, \qquad x_i = \frac{\frac{y_i}{X_i}}{\sum \left(\frac{y_i}{X_i}\right)}, \qquad \sum_{i=1}^{N_c} x_i = \sum_{i=1}^{N_c} \frac{y_i}{K_i} = 1.0, \qquad (K_i) Trial 2 = (K_i) Trial 1 \sum \frac{y_i}{K_i}$$

Gilliland correlation (number of ideal plates at the operating reflux):

Molokanov's Correlation:

$$\frac{N-N_{\min}}{N+1} = 1 - \exp\left[\left(\frac{1+54.4\Psi}{11+117,2\Psi}\right)\left(\frac{\psi-1}{\psi^{0.5}}\right)\right] \qquad \text{Where: } \Psi = \frac{R-R_{\min}}{R+1}; \quad R_m = \frac{1}{\alpha-1}\left[\frac{x_d}{x_f} - \alpha\frac{1-x_d}{1-x_f}\right]$$

$$\text{Slope of q-line: } -\left(\frac{f}{1-f}\right); \quad f = \left(\frac{c_p(t_b-t_f)_{Liquid} + \Lambda_{Feed} + (c_p(t_b-t_f))\text{sup erneated vapour}}{\Lambda}\right)$$

$$\frac{\text{Number of transfer units is given by: } N_{OG} = \int_{Y_1}^{Y_2} \frac{dY}{Y_e-Y}; \quad N_{OG} = \frac{Z}{H_{OG}}; \quad N_{OL} = N_{OG}\left(\frac{mG_M}{L_M}\right)$$

$$\frac{\text{Height of transfer unit is given by: } H_{OG} = \frac{G_M}{K_G a P}$$

$$\frac{\text{Equilibrium partial pressure: } P_a = P_a^o \left\{\frac{n_a}{n_a + n_b + n_c + \dots + n_c}\right\} = x_a P_a^o$$

Water balance:
$$w_1 = w_2 + \left(y - \frac{y}{R}\right) + w_1 E$$

Yield of crystals:
$$y = \frac{Rw_1[c_1 - c_2(1 - E)]}{[1 - c_2(R - 1)]}$$

Adsorption Isotherms:

$$q = Kc^n \quad q = \frac{q_o c}{K+c} \quad ,$$

	Table A.1: Conversion Factors	Energy	$1 \text{ J} = 1 \text{ kg m}^2 \text{ s}^{-2} = 1 \text{ N m}$	
Quantity	Conversion		$= 1 \text{ m}^3 \text{ Pa} = 10^{-5} \text{ m}^3 \text{ bar} = 10 \text{ cm}^3 \text{ bar}$ = 9.86923 cm ³ (atm)	
Length	1 m = 100 cm = 3.28084(ft) = 39.3701(in)		= 10^7 (dyne) cm = 10^7 (erg) = 0.239006(cal)	
Mass	$1 kg = 10^3 g$ = 2.20462(lb _m)		= 5.12197×10^{-3} (ft) ³ (psia) = 0.737562 (ft)(lb _f) = 9.47831×10^{-4} (Btu) = 2.77778×10^{-7} kWhr	
Force	$1 N = 1 kg m s^{-2^{\pm 0.5}}$ = 10 ⁵ (dyne) = 0.224809(lb _f)	Power	$1 \text{ kW} = 10^3 \text{ W} = 10^3 \text{ kg m}^2 \text{ s}^{-3} = 10^3 \text{ J s}^{-1}$ = 239.006(cal) s ⁻¹ = 737.562(ft)(lbft) s ⁻¹ = 0.947831(Btu) s ⁻¹	
Pressure	1 bar = 10^5 kg m ⁻¹ s ⁻² = 10^5 N m ⁻² = 10^5 Pa = 10^2 kPa = 10^6 (dyne) cm ⁻² = 0.986923 (atm)		= 1.34102(hp)	
= 14.5038(psia) = 750.061(torr)		Table A.2: Values of the Universal Gas Constant		
Volume	$1 \text{ m}^3 = 10^6 \text{ cm}^3 = 10^3 \text{ liters}$ = 35.3147(ft) ³ = 264.172(gal)	$R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1} = 8.314 \text{ m}^3 \text{ Pa mol}^{-1} \text{ K}^{-1}$ = 83.14 cm ³ bar mol}^{-1} K^{-1} = 8,314 cm ³ kPa mol}^{-1} K^{-1} = 82.06 cm ³ (atm) mol}^{-1} K^{-1} = 62,356 cm ³ (torr) mol}^{-1} \text{ K}^{-1} = 1.987(cal) mol}^{-1} K^{-1} = 1.986(Btu)(lb mole)^{-1}(R)^{-1} = 0.7302(ft) ³ (atm)(lb mol)^{-1}(R)^{-1} = 10.73(ft)^3(psia)(lb mol)^{-1}(R)^{-1} = 1,545(ft)(lbf)(lb mol)^{-1}(R)^{-1}		
Density	$1 \text{ g cm}^{-3} = 10^3 \text{ kg m}^{-3}$ $= 62.4278(\text{lb}_m)(\text{ft})^{-3}$			