

PROGRAM : BACHELOR OF MINE SURVEYING

UNIVERSITY OF JOHANNESBURG

SUBJECT: MINERALS RESOURCE EVALUATION 3A

FINAL EXAMINATION

CODE : MREMSA3

DATE : 03 JUNE 2019

<u>DURATION</u> : 3 HOURS (08:30 – 11:30)

TOTAL MARKS : 100 Marks

<u>LECTURER</u> : Mrs. M Mpanza <u>MODERATOR</u> : Prof. H. Grobler

NUMBER OF PAGES: 4

INSTRUCTIONS

- ANY CALCULATOR PERMITTED. MORE THAN ONE CALCULATOR PER CANDIDATE ALLOWED
- FORMULAE AND STATISTICAL TABLES ALLOWED.
- NO EXPLANATORARY NOTES TO APPEAR IN THESE FILES.
- NO MEMORY STICKS WILL BE ALLOWED
- ANSWERS MUST BE COPIED INTO THE EXAM SCRIPTS, COMPUTERS MAY BE USED TO GENERATE CALCULATIONS, BUT NO PRINT-OUTS WILL BE ACCEPTED
- GRAPH PAPER WILL BE SUPPLIED

REQUIREMENTS : NONE.

INSTRUCTIONS TO STUDENTS:

- 1. ANSWER ALL THE QUESTIONS.
- 2. WORK NEATLY AND SYSTEMATICALLY. MARKS WILL BE GIVEN FOR WELL LAYED OUT ANSWERS.
- 3. STUDENTS TO ENSURE THAT THEIR NAME AND OR STUDENT NUMBER APPEARS ON EACH SHEET HANDED IN
- 4. STUDENTS MAY MAKE USE OF THE COMPUTERS, WITH ASSOCIATED FUNCTIONS ON EXCEL, AVAILABLE IN THE VENUE OR USE THEIR OWN CALCULATERS WITH STATISTICAL TABLES

Question 1

1.1

2	Draw the	grade to	nnage curve t	om	14.000	MJ to	24.000	Mega Jo	ule	
1	Determin	ne the	90.00%	confidence limit	ts for the m	ean value	of the de	eposit		
	Calculat	te the fol	lowing from	the given infor	mation:					
	alluar	оригаціон	Standard de	vialion ((o) oi.	1.530	iviega Ju	ule			
	and a D	opulation	Standard do	viation ((δ*) of:		Mega Joule				
		aPo	pulation Mea	18.260	Mega Joule					
		110110		2 mannany ana ra	arraorriny aro	LI ID GEO GI Y				
	indicates	that the	ore values are	e normally and ra	andomly dis	tributed w	vith:			
he re	sults of th	ne samplin	ng program, b	pased on some	93	Samples	;			

[30]

Question 2

- 2.1. What distributions (normal or lognormal) are the following deposits?
- i) Gold
- ii) Limestone

iii) Platinum [6]

2.2. State and discuss three (3) graphical methods of describing statistical data (make use of sketches to illustrate your answer).

[4]

- 2.3. Define the following terms
- 2.3.1 Official paylimit
- 2.3.2 Effective paylimit [4]
- 2.4. Discuss four main assumptions in Mining Statistics

[4]

[18]

QUESTION 3.

3.1

The follo	wing values	were obta	ained from	9 differer	nt boreholes			
		Grade	Width					
	Borehole	(g/t)	(cm)					
	1	4.0	81					
	2	5.4	79					
	3	2.3	101					
	4	19.7	66					
	5	15.6	75					
	6	4.2	89					
	7	3.9	84					
	8	6.2	63					
	9	5.8	82					
The a	The additive constant (β*) 120							
					information			
ii	Calculate	g/t						
iii	How much	of the res	erve will be	e payable	at a paylimi	t of	6.0	g/t

QUESTION 4.

4.1

The following are the a	accumulatio	on values	(in ppm) f	rom the M	lerensky Pl	atinum Re	eef in a pr	ospecting	area.	
14.7										
21.1										
0.2										
3.3										
1.6										
8.4										
11.7										
16.8										
0.2										
2.6										
1.3										
6.7										
45.0										
5.2										
2.6										
3.6										
4.4										
2.1										
3.0										
Given the following info	mation									
diven the following fillor		notant R*	3.19	nnm						
Maan for the Loren	Additive constant $oldsymbol{eta}^*$ Mean for the Lognormal distribution $oldsymbol{\mathcal{T}}$									
iviean for the Logn	omiai distrib	ution L	11.60	ppm						
Calculate the t	following:									
1. What propor	tion of the or	ebody lies a	bove the c	ut-off grade	and at what g	rade?				
2. Calculate the	e proportion a	and grade of	the oreboo	dy that will b	e above the	cut-off grade	for values	starting at 2	2ppm to 24p	pm
									[40 Marks	

TOTAL [100] MARKS