URNERSITY
JOHANNESBURG
PROGRAM: Beng. TechMINING ENGINEERING
SUBJECT:
MINE ENGINEERING 2A
SUPPLEMENTARY
CODE:
MINMNA2
DATE: 18 July 2019
DURATION: 3 Hours
WEIGHT:
TOTAL MARKS 94
ASSESSOR: Mr AMULI BUKANGA
MODERATOR: Dr Shaniel Davrajh
NUMBER OF PAGES: 03
INSTRUCTIONS

1. ANSWER ALL QUESTIONS
2. CELLPHONES MUST BE SWITCHED OFF
3. ONLY ONE STANDARD CALCULATOR ALLOWED PER STUDENT

Question 1

With regards to single phase alternating voltage explain briefly the difference between the following:
1.1. Inductance and capacitance
1.2. Resistance and impedance

Question 2

A 20Ω resistor is connected in series with a coil of inductance 80 mH . The combined circuit is connected to a $200 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate:
2.1. The reactance of the coil
2.2. Impedance of the circuit
2.3. Current in the circuit
2.4. Power factor of the circuit
2.5. Power absorbed by the circuit
2.6. Value of the capacitance to connect in parallel in order to correct the power factor to 0.9

Question 3

Water flows through the pipe at the rate of 30 litres/s. The absolute pressure at point A is 200 kPa , and the point B is 8 m higher than point A. The lower section of pipe has a diameter of 16 cm and the upper section narrows to a diameter of 10 cm .

Find the velocities of the stream at points A and B.
Hint: use Bernoulli principle at points A and B

Question 4

4.1. State what type of gearing system is used to convert rotary motion into translating motion
4.2. Give using your own words the similarity and the difference between clutching and braking system

Question 5

Determine the reactions (magnitude and direction) of supports A and B for the following structure
5.1. Calculate the reactions of supports
5.2. Determine the shear forces and bending moments at A, B, C, D and E
5.3. Draw the moment and shear force diagrams

Question 6

A fluid system, contained in a piston and cylinder machine, passes through a complete cycle of four processes. The sum of all heat transferred during a cycle is - 3400J. The system completes 120cycles every hour.
6.1. Complete the following table calculating the values A, B, C, D, E and F show your calculations for each item
6.2. Compute the net rate of work output in kW .

Process	$\mathrm{Q}(\mathrm{kJ} / \mathrm{min})$	$\mathrm{W}(\mathrm{kJ} / \mathrm{kg})$	$\Delta \mathrm{U}(\mathrm{kJ} / \mathrm{min})$
$1-2$	0	434	D
$2-3$	4200	0	E
$3-4$	-420	B	-7320
$4-5$	A	C	F

