

PROGRAM: Beng. Tech

MINING ENGINEERING

SUBJECT: MINE ENGINEERING 2A

SUPPLEMENTARY

CODE: MINMNA2

DATE: 18 July 2019

DURATION: 3 Hours

WEIGHT:

TOTAL MARKS 94

ASSESSOR: Mr AMULI BUKANGA

MODERATOR: Dr Shaniel Davrajh

NUMBER OF PAGES: 03

INSTRUCTIONS

- 1. ANSWER ALL QUESTIONS
- 2. CELLPHONES MUST BE SWITCHED OFF
- 3. ONLY ONE STANDARD CALCULATOR ALLOWED PER STUDENT

Question 1

With regards to single phase alternating voltage explain briefly the difference between the following:

- 1.1. Inductance and capacitance (5)
- 1.2. Resistance and impedance (5)

Question 2

A 20Ω resistor is connected in series with a coil of inductance 80mH. The combined circuit is connected to a 200V, 50Hz supply. Calculate:

- 2.1. The reactance of the coil (4)
- 2.2. Impedance of the circuit (4)
- 2.3. Current in the circuit (4)
- 2.4. Power factor of the circuit (4)
- 2.5. Power absorbed by the circuit
- 2.6. Value of the capacitance to connect in parallel in order to correct the power factor to 0.9 (6)

Question 3

Water flows through the pipe at the rate of 30 litres/s. The absolute pressure at point A is 200kPa, and the point B is 8 m higher than point A. The lower section of pipe has a diameter of 16 cm and the upper section narrows to a diameter of 10cm.

Find the velocities of the stream at points A and B. (8)

Hint: use Bernoulli principle at points A and B

Question 4

- 4.1. State what type of gearing system is used to convert rotary motion into translating motion
- 4.2. Give using your own words the similarity and the difference between clutching and braking system (3)

(2)

Question 5

Determine the reactions (magnitude and direction) of supports A and B for the following structure

- 5.1. Calculate the reactions of supports (8)
- 5.2. Determine the shear forces and bending moments at A, B, C, D and E (10)
- 5.3. Draw the moment and shear force diagrams (10)

Question 6

A fluid system, contained in a piston and cylinder machine, passes through a complete cycle of four processes. The sum of all heat transferred during a cycle is – 3400J. The system completes 120cycles every hour.

6.1. Complete the following table calculating the values A, B, C, D, E and F show your calculations for each item (18)

6.2. Compute the net rate of work output in kW. (3)

Process	Q (kJ/min)	W(kJ/kg)	ΔU (kJ/min)
1-2	0	434	D
2-3	4200	0	E
3-4	-420	В	-7320
4-5	Α	С	F