UNIVERSITY
JOHANNESBURG

PROGRAM	BACCALAUREUS INGENERIAE CIVIL ENGINEERING SCIENCE
SUBJECT	APPLIED MECHANICS 2A
CODE	MGACIA2 / MGA2A11
DATE	SUPPLEMENTARY EXAMINATION JULY 2019
DURATION	: 3 Hours
WEIGHT	$50: 50$
TOTAL MARKS	: 100

ASSESSORS : MR P VAN TONDER
MODERATOR : PROF S EKOLU
NUMBER OF PAGES : 4 PAGES

INSTRUCTIONS \quad	ONLY ONE POCKET CALCULATOR PER CANDIDATE
	MAY BE USED.
	NO MOBILE PHONES OR PROGRAMMABLE
	CALCULATORS ALLOWED

INSTRUCTIONS TO STUDENTS

ANSWER SECTION A AND B IN SEPARATE EXAMINATION BOOKS AND HAND THE BOOKS IN SEPARATELY. ALSO HAND IN THE QUESTION PAPER.

SECTION A - STATICS

QUESTION A1 [10]

a) Derive the Shear Flow Equation.

$$
\begin{equation*}
f=\frac{V Q}{I} \tag{8.5}
\end{equation*}
$$

b) Why do we need to design for shear flow within a structural member?

QUESTION A2 [16]

Draw the shear force and bending moment diagram for beam $A B C$ shown in Figure 1.

Figure 1

QUESTION A3 [14]

Determine the maximum deflection and rotation of the beam shown in Figure 2. Use a second order differential equation. EI is constant for the beam.

Figure 2

QUESTION A4 [10]

Repeat question A3, but using moment area theorems.

SECTION B - DYNAMICS

QUESTION B1 [15]

Three rotating masses, $\mathrm{A}=14 \mathrm{~kg}, \mathrm{~B}=11 \mathrm{~kg}$ and $\mathrm{C}=21 \mathrm{~kg}$, are carried on a shaft, with centres of mass $275 \mathrm{~mm}, 400 \mathrm{~mm}$ and 150 mm respectively from the shaft axis. The angular positions of B and C are 60° and 135° respectively from A, measured in the same direction. The distance between the planes of rotation A and B is 1.35 m , and between those of A and C is $3.6 \mathrm{~m}, \mathrm{~B}$ and C being on the same side of A .
Two balance masses are to be fitted, each with its centre of mass 225 mm from the shaft axis, in the planes midway between those of A and B (take this mass as your reference plane) and of B and C. Determine the magnitude and angular position with respect to A of each balance mass.

QUESTION B2 [9]

A steady 22 N force is applied normal to the handle of the hand-operated grinder. The gear inside the housing with its shaft and attached handle have a combined mass of 1.8 kg and a radius of gyration about their axis of 72 mm . The grinding wheel with its attached shaft and pinion (inside housing) have a combined mass of 0.55 kg and a radius of gyration of 54 mm . If the gear ratio between gear and pinion is $4: 1$, calculate the speed N of the grinding wheel after 6 complete revolutions of the handle starting from rest.

Figure 3

QUESTION B3 [16]

In the mechanism shown in Figure 4, the link AB rotates with a uniform angular velocity of $30 \mathrm{rad} / \mathrm{s}$. Determine the velocity and acceleration of G for the configuration shown if C can only move horizontally.

Figure 4

QUESTION B4 [10]

Proof that the acceleration of a block sliding on a rotating link are:

- $\omega^{2} r$ and $r \alpha \rightarrow$ radial and tangential accelerations of the coincident link point relative to O
- f and $2 v \omega \rightarrow$ radial and tangential accelerations of the block relative to the coincident link point

INFORMATION SHEET

$X=\frac{F_{0} / k}{\left\{\left[1-\left(\omega / \omega_{n}\right)^{2}\right]^{2}+\left[2 \delta \omega / \omega_{n}\right]^{2}\right\}^{1 / 2}}$
$\phi=\tan ^{-1}\left[\frac{2 \delta \omega / \omega_{n}}{1-\left(\omega / \omega_{n}\right)^{2}}\right]$
$\omega_{n}=\sqrt{k / m}$
$\varsigma=c / 2 m \omega_{n}$
$M=\frac{1}{\left\{\left[1-\left(\omega / \omega_{n}\right)^{2}\right]^{2}+\left[2 \varsigma \omega / \omega_{n}\right]^{2}\right\}^{1 / 2}}$
Mass moment of inertia of a rod $=(1 / 12) m l^{2}$
$x_{p}=X \sin (\omega t-\phi)$

