PROGRAM
 : BACHELOR OF ENGINEERING TECHNOLOGY ENGINEERING: MECHANICAL

SUB.JECT MECHANICS OF MACHINES 3A

: MEMMIA 3

DATE : WINTER SSA EXAMINATION 2019 18 JULY 2019

DURATION $: 11: 30-14: 30$

WEIGHT : 40:60
TOTAL MARKS $:(100$ marks $=100 \%)$
EXAMINER : Dr K. TEKWEME

MODERATOR : Mrs D. IONESCU
NUMBER OF PAGES : 3 PAGES + 1 ANNEXURE

INSTRUCTIONS:

1) ALL SKETCHES MUST BE DONE WITH DRAWING INSTRUMENTS. MARKS WILL BE DEDUCTED FOR UNTIDY WORK.
2) STUDENTS MUST SUPPLY OWN DRAWING EQUIPMENT.
3) ANSWER ALL THE QUESTIONS.

QUESTION 1

Model the system shown in Figure 1 by a block attached to a single spring of an equivalent stiffness $K_{\text {eq }}$. If $k=2200 \mathrm{~N} / \mathrm{m}$, determine the mass of the block m such that the natural frequency is 25 Hz .

Figure 1
[10]

QUESTION 2

Investigate the out-of-balance of primary forces and couples of a 2 -stroke six-cylinder in line engine for the firing order 1-2-4-6-5-3, taking a plane mid-way between the cylinders 3 and 4 as the reference plane. The radius of crank is 60 mm and the ratio of connecting rod to crank is 5.0 . The reciprocating mass per line is 2.5 kg , the distance between the center lines of the cylinders is 120 mm , and the engine speed is $3000 \mathrm{r} . \mathrm{p} . \mathrm{m}$.

QUESTION 3

3.1) Design a cam that will give a lift of 34 mm to a roller follower. The diameter of the roller is 20 mm . The outstroke of the follower takes place with a simple harmonic motion during 90° of cam rotation followed by a dwell during 30° of cam rotation. The follower then returns to its initial position by simple harmonic motion in the next 120° of cam rotation. The minimum radius of the cam is 25 mm ; and
3.2) Determine the maximum velocity and acceleration of the follower during outstroke and return, if the cam rotates at 300 r.p.m.

QUESTION 4

The propeller of a steamer weighing 5.8 kN rotates at $3120 \mathrm{r} . \mathrm{p} . \mathrm{m}$. clockwise when viewed from the rear. The rotor has a radius of gyration of 0.6 m . Determine the magnitude and the effects of the gyroscopic effects in the following conditions:
4.1) The steamer pitches 10 degree above and 10 degree below the horizontal position. The pitching motion is simple harmonic and a complete oscillation takes 15 seconds. The bow is descending with its maximum velocity.
4.2) The steamer sails at a speed of $45 \mathrm{~km} / \mathrm{h}$ and steers to the right at a curve having 70 m radius.
4.3) The steamer rolls and at a certain instant it has an angular velocity of $0.06 \mathrm{rad} / \mathrm{s}$ anticlockwise when viewed from the rear.

QUESTION 5

The connecting rod of a reciprocating machine is 2 m long and rotates at 150 r.p.m. The stroke of the piston is 800 mm and its diameter is 180 mm . The radius of gyration of the rod about its centroidal axis is 580 mm . The reciprocating mass is 240 kg and the mass of the connecting rod is 200 kg . The distance of the center of gravity of the connecting rod from crank pin is 430 mm . Determine the magnitude and direction of the inertia torque on the crank shaft when the crank turns through 45^{0} from inner dead center.

FORMULA SHEET

$I=\frac{\pi}{64} D^{4}$
$I=m k^{2}$
$V_{\max }=\frac{2 h \omega}{\theta_{0}}$
$A_{\max }=\frac{2 \pi h \omega^{2}}{\theta_{0}^{2}}$
$V_{\max }=\frac{2 \pi h \omega^{2}}{\theta_{R}}$
$A_{\max }=\frac{2 \pi h \omega^{2}}{\theta_{R}^{2}}$
$C_{\max }=m r l \omega^{2}$
$\omega=\frac{2 \pi N}{60}$
$\omega_{0}=\frac{2 \pi}{\tau}$
$\left(\omega_{p}\right)_{\max }=\phi \omega_{0}$
$C_{\max }=I \omega\left(\omega_{p}\right)_{\max }$
$\omega_{p}=\frac{V}{R}$
$C=I \omega \omega_{p}$
$L_{E}=a+\frac{k^{2}}{a}$
$W_{P}=R+\frac{(l-a)}{l} W_{c}$
$F_{p}=m_{p} r \omega^{2}\left(\cos \theta+\frac{\cos 2 \theta}{5}\right)$
$T_{P}=F_{P} r\left(\sin \theta+\frac{\sin 2 \theta}{2 \sqrt{\left(n^{2}-\sin ^{2} \theta\right)}}\right)$
$T_{C}=\left(\frac{W_{C}}{g}\right) a\left(l-L_{E}\right) \frac{\omega^{2}}{2 n^{2}} \sin 2 \theta$
$T_{w}=W_{C}\left(\frac{a}{n}\right) \cos \theta$
$T_{i}=T_{P}+T_{C}+T_{w}$

