PROGRAM

: BACHELOR OF ENGINEERING TECHNOLOGY ENGINEERING: MECHANICAL

SUBJECT	MECHANICS OF MACHINES 3A
$\underline{\text { CODE }}$	$:$ MEMMIA 3
$\underline{\text { DATE }}$	$:$ WINTER EXAMINATION 2019
	22 MAY 2019
$\underline{\text { DURATION }}$	$:$ (Y-PAPER) 12:30-15:30
$\underline{\text { WEIGHT }}$	$: 40: 60$
$\underline{\text { TOTAL MARKS }}$	$:(100$ marks $=100 \%)$

EXAMINER : Dr K. TEKWEME

MODERATOR : Mrs D. IONESCU
NUMBER OF PAGES : 3 PAGES + 1 ANNEXURE

INSTRUCTIONS:

1) ALL SKETCHES MUST BE DONE WITH DRAWING INSTRUMENTS. MARKS WILL BE DEDUCTED FOR UNTIDY WORK.
2) STUDENTS MUST SUPPLY OWN DRAWING EQUIPMENT.
3) ANSWER ALL THE QUESTIONS.

QUESTION 1

A nickel shaft 20 mm diameter is held in long bearing 1200 mm apart and carries at its middle a disc weighing 120 N . The modulus of elasticity for the shaft material is $20.7 \mathrm{~N} / \mathrm{cm}^{2}$.
1.1) Show that the static deflection at the mid-span of the shaft is given by

$$
\delta=\frac{w l^{3}}{192 E I}
$$

where w is the weight of the disc, l is the length of the shaft, E is the modulus of elasticity and I is the second moment of area of the shaft.
1.2) Determine the critical speed of the shaft.

QUESTION 2

Four masses A, B, C and D carried by a rotating shaft are at radii $120 \mathrm{~mm}, 135 \mathrm{~mm}, 180 \mathrm{~mm}$ and 200 mm respectively. The planes in which the masses revolve are spaced 800 mm apart and the masses of B, C and D are $12 \mathrm{~kg}, 8 \mathrm{~kg}$ and 6 kg respectively. The angular spacing of planes containing A, C, And D are measured relative to B and in the same sense. Find the required mass A and the relative angular positions of the four masses so that the shaft is in complete balance.

QUESTION 3

Design a radial cam for operating a knife-edge follower of a machine with the following data:

1. Cam lift $=32 \mathrm{~mm}$ during 120° of cam rotation with uniformly accelerated motion;
2. Dwell for the next 60°;
3. During the next 120° of cam rotation, the follower returns to its original position with a uniform velocity; and
4. Dwell during the remaining 60°.

The radius of the base circle is 25 mm .

QUESTION 4

An aeroplane runs at 3000 r.p.m. anticlockwise, when viewed from the rear. The rotary engine and propeller of the plane has a mass of 500 kg with a radius of gyration of 400 mm . If the aeroplane makes a complete half circle of 60 meters radius, towards right, when flying at 360 km per hour,

QUESTION 4 (CONTINUED)

4.1) Find the gyro-reaction couple and investigate its effect on the stability of the aeroplane; and
4.2) What will be the effect of the gyro-reaction couple if the aeroplane turns to the left.

QUESTION 5

The turning moment-crank angle diagram for a petrol engine is represented by the equation

$$
T=(18035+3431.8 \sin 3 \theta-1789.6 \cos 3 \theta) N . m
$$

where θ is the angle moved by the crank from inner dead center in radians. If the resisting torque is constant and the radius of gyration of the wheel is 1.02 , determine:
5.1) The power developed by the engine if the mean speed is 220 r.p.m;
5.2) The maximum fluctuation of energy of the flywheel;
5.3) The moment of inertia of inertia of the flywheel; and
5.4) The acceleration produced by the torque when the crank has turned 60° from the inner dead centre.

TOTAL MARKS AVAILABLE $=100$ ($\mathbf{1 0 0}$ MARKS $=\mathbf{1 0 0 \%}$)

FORMULA SHEET

$$
\begin{aligned}
& I=\frac{\pi}{64} D^{4} \\
& I=m k^{2} \\
& \omega_{p}=\frac{V}{R} \\
& C=I \omega \omega_{p} \\
& \omega=\frac{2 \pi N}{60}
\end{aligned}
$$

$$
T_{\text {mean }}=\frac{1}{2 \pi} \int_{0}^{2 \pi} T d \theta
$$

$$
P=T_{\text {mean }} \omega
$$

$$
T^{\prime}=T-T_{\text {mean }}
$$

$$
\Delta E=\frac{I \omega^{2} k_{s}}{100}
$$

$$
\alpha=\frac{T^{t}}{I}
$$

$$
\Delta E=\int_{\theta_{1}}^{\theta_{2}}\left(T-T_{\text {mean }}\right) d \theta
$$

