

PROGRAM : BACHELOR ENGINEERING

TECHNOLOGIE: CHEMICAL

SUBJECT : **INTRODUCTION TO REACTOR**

DESIGN

<u>CODE</u> : IRDCHA3

<u>DATE</u> : WINTER EXAMINATION

28 May 2019

<u>DURATION</u> : (X-PAPER) 08:30 - 11:30

WEIGHT : 40: 60

TOTAL MARKS : 100

EXAMINER : Prof. M BELAID

MODERATOR : Ms W Mohamed

NUMBER OF PAGES : 3 PAGES

INSTRUCTIONS : ANSWER ALL QUESTIONS

NON PROGRAMMABLE CALCULATORS PERMITED

(ONE PER STUDENT)

REQUIREMENTS : 2 SHEETS OF GRAPH PAPER

Question One [25 Marks]

We consider a gas reaction in which condensation occurs

$$C_2H_6(g) + 2Br_2(g) \rightarrow C_2H_4Br_2(g,l) + 2HBr$$

- **1.1.** Set up a stoichiometric table for the reaction this reaction knowing that one of the products condenses during the course of the reaction. (15)
- **1.2.** Sketch the concentration and flow rates of each species as a function of conversion.

(10)

[25]

Question Two (Compulsory) [50 Marks]

The elementary liquid phase reaction A + B C is carried out in a 500 dm³ reactor. The entering concentrations of streams A&B are both 2 molar and the specific reaction rate is $0.01 \text{ dm}^3/\text{ mol.min}$. Determine:

- **2.1**. The time to achieve 90 % conversion in a batch reactor filled to the brim (8)
- **2.2**. The reactor Volume of a CSTR to achieve 90 % conversion (feed of 10 mol A/min)

(8)

- **2.3**. The reactor Volume of a PFR to achieve 90 % conversion (feed of 10 mol A/min)
- **2.4**. Decide on the best sequence of reactors if you were to use an intermediate reactor at conversion of 60 % to achieve a final conversion of 90 % (12)
- **2.4**. The equilibrium conversion and the volumes of CSTR and PFR to achieve 98 % of the equilibrium conversion assuming the reaction is reversible with $Kc= 2 \text{ dm}^3/\text{mol}$ (12)

[50]

Question Three [25 Marks]

The irreversible isomerization

$$A \rightarrow B$$

was carried out in a batch reactor and the following concentration- time data were obtained:

T(min)	0	3	5	8	10	12	15	17.5
C_{A}	4.0	2.89	2.25	1.45	1.0	0.65	.25	0.07
(Mol/dm^3)								

3.1 Determine the reaction order, α , and the specific reaction rate, k_A . (20)

INTRODUCTION TO REACTOR DESIGN IRDCHA3

3.2 If you were to repeat this experiment to determine the kinetics, what would you do differently? Would you run at a higher, lower, or the same temperature? Take different data points? Explain. (5)

[25]

INTRODUCTION TO REACTOR DESIGN IRDCHA3

A.1 Useful Integrals in Reactor Design

$$\int_0^x \frac{dx}{1-x} = \ln \frac{1}{1-x}$$
 (A-1)

$$\int_0^x \frac{dx}{(1-x)^2} = \frac{x}{1-x}$$
 (A-2)

$$\int_0^x \frac{dx}{1+\varepsilon x} = \frac{1}{\varepsilon} \ln(1+\varepsilon x) \tag{A-3}$$

$$\int_0^x \frac{1+\varepsilon x}{1-x} dx = (1+\varepsilon) \ln \frac{1}{1-x} - \varepsilon x \tag{A-4}$$

$$\int_0^x \frac{1+\varepsilon x}{(1-x)^2} dx = \frac{(1-\varepsilon)x}{1-x} - \varepsilon \ln \frac{1}{1-x}$$
 (A-5)

$$\int_0^x \frac{(1+\varepsilon x)^2}{(1-x)^2} dx = 2\varepsilon (1+\varepsilon) \ln(1-x) + \varepsilon^2 x + \frac{(1+\varepsilon)^2 x}{1-x}$$
 (A-6)

$$\int_0^x \frac{dx}{(1-x)(\Theta_B - x)} = \frac{1}{\Theta_B - 1} \ln \frac{\Theta_B - x}{\Theta_B (1-x)} \qquad \Theta_B \neq 1$$
 (A-7)

$$\int_0^x \frac{dx}{ax^2 + bx + c} = \frac{-2}{2ax + b} + \frac{2}{b} \quad \text{for } b^2 = 4ac$$
 (A-8)

$$\int_0^x \frac{dx}{ax^2 + bx + c} = \frac{1}{a(p-q)} \ln \left(\frac{q}{p} \cdot \frac{x-p}{x-q} \right) \quad \text{for } b^2 > 4ac \quad (A-9)$$

$$\int_0^W (1 - \alpha W)^{1/2} dW = \frac{2}{3\alpha} \left[1 - (1 - \alpha W)^{3/2} \right]$$
 (A-10)

				TABLE A-1		
	x_i	Уi	Δχ	Δу	$\frac{\Delta y}{\Delta x}$	dy dx
:	<i>x</i> ₁	y_1			· ·	$\left(\frac{dy}{dx}\right)_1$
	٠		x_2-x_1	$y_2 - y_1$	$\left(\frac{\Delta y}{\Delta x}\right)_2$	
a)	<i>x</i> ₂	y ₂ .	•			$\left(\frac{dy}{dx}\right)_2$
			x_3-x_2	$y_3 - y_2$	$\left(\frac{\Delta y}{\Delta x}\right)_3$	(·)
	x_3	<i>y</i> ₃	•			$\left(\frac{dy}{dx}\right)_3$
			$x_4 - x_3$	$y_4 - y_3$	$\left(\frac{\Delta y}{\Delta x}\right)_4$	()
	'x ₄	y 4				$\left(\frac{dy}{dx}\right)_4$
			$x_5 - x_4$	$y_5 - y_4$	$\left(\frac{\Delta y}{\Delta x}\right)_{5}$. •
	. x ₅	<i>y</i> ₅		etc.		

Ideal Gas Constant

$$R = \frac{8.314 \text{ kPa} \cdot \text{dm}^3}{\text{mol} \cdot \text{K}}$$

$$R = \frac{0.73 \text{ ft}^3 \cdot \text{atm}}{\text{lb mol} \cdot \text{°R}}$$

$$R = \frac{8.3144 \text{ J}}{\text{mol} \cdot \text{K}}$$

$$R = \frac{8.3144 \text{ J}}{\text{mol} \cdot \text{K}}$$

$$R = \frac{8.3144 \text{ J}}{\text{mol} \cdot \text{K}}$$

$$R = \frac{1.987 \text{ cal}}{\text{mol} \cdot \text{K}}$$

$$R = \frac{1.987 \text{ cal}}{\text{mol} \cdot \text{K}}$$