$\frac{\text { UNIVERSITY }}{\text { JOHANNESBURG }}$

INTRODUCTION TO REACTOR DESIGN IRDCHA3

Question One [25 Marks]

We consider a gas reaction in which condensation occurs

$$
\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+2 \mathrm{Br}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}(\mathrm{~g}, \mathrm{l})+2 \mathrm{HBr}
$$

1.1. Set up a stoichiometric table for the reaction this reaction knowing that one of the products condenses during the course of the reaction.
1.2. Sketch the concentration and flow rates of each species as a function of conversion.

Question Two (Compulsory) [50 Marks]

The elementary liquid phase reaction $A+B \longrightarrow C$ is carried out in a $500 \mathrm{dm}^{3}$ reactor. The entering concentrations of streams A\&B are both 2 molar and the specific reaction rate is $0.01 \mathrm{dm}^{3} / \mathrm{mol} . \mathrm{min}$. Determine:
2.1. The time to achieve 90% conversion in a batch reactor filled to the brim
2.2. The reactor Volume of a CSTR to achieve 90% conversion (feed of $10 \mathrm{~mol} \mathrm{~A} / \mathrm{min}$)
2.3. The reactor Volume of a PFR to achieve 90% conversion (feed of $10 \mathrm{~mol} \mathrm{~A} / \mathrm{min}$)
2.4. Decide on the best sequence of reactors if you were to use an intermediate reactor at conversion of 60% to achieve a final conversion of 90%
2.4. The equilibrium conversion and the volumes of CSTR and PFR to achieve 98% of the equilibrium conversion assuming the reaction is reversible with $\mathrm{Kc}=2 \mathrm{dm}^{3} / \mathrm{mol}$ (12)

Question Three [25 Marks]

The irreversible isomerization

$$
\mathbf{A} \rightarrow \mathbf{B}
$$

was carried out in a batch reactor and the following concentration- time data were obtained:

T (min)	0	3	5	8	10	12	15	17.5
C_{A} $\left(\mathrm{Mol} / \mathrm{dm}^{3}\right)$	4.0	2.89	2.25	1.45	1.0	0.65	.25	0.07

3.1 Determine the reaction order, α, and the specific reaction rate, k_{A}.

INTRODUCTION TO REACTOR DESIGN IRDCHA3

3.2 If you were to repeat this experiment to determine the kinetics, what would you do differently? Would you run at a higher, lower, or the same temperature? Take different data points? Explain.

INTRODUCTION TO REACTOR DESIGN IRDCHA3

A. 1 Useful Integrals in Reactor Design

$$
\begin{align*}
& \int_{0}^{x} \frac{d x}{1-x}=\ln \frac{1}{1-x} \tag{A-1}\\
& \int_{0}^{x} \frac{d x}{(1-x)^{2}}=\frac{x}{1-x} \tag{A-2}\\
& \int_{0}^{x} \frac{d x}{1+\varepsilon x}=\frac{1}{\varepsilon} \ln (1+\varepsilon x) \tag{A-3}\\
& \int_{0}^{x} \frac{1+\varepsilon x}{1-x} d x=(1+\varepsilon) \ln \frac{1}{1-x}-\varepsilon x \tag{A-4}\\
& \int_{0}^{x} \frac{1+\varepsilon x}{(1-x)^{2}} d x=\frac{(1-\varepsilon) x}{1-x}-\varepsilon \ln \frac{1}{1-x} \tag{A-5}\\
& \int_{0}^{x} \frac{(1+\varepsilon x)^{2}}{(1-x)^{2}} d x=2 \varepsilon(1+\varepsilon) \ln (1-x)+\varepsilon^{2} x+\frac{(1+\varepsilon)^{2} x}{1-x} \tag{A-6}\\
& \int_{0}^{x} \frac{d x}{(1-x)\left(\Theta_{B}-x\right)}=\frac{1}{\Theta_{B}-1} \ln \frac{\Theta_{B}-x}{\Theta_{B}(1-x)} \quad \Theta_{B} \neq 1 \tag{A-7}\\
& \int_{0}^{x} \frac{d x}{a x^{2}+b x+c}=\frac{-2}{2 a x+b}+\frac{2}{b} \quad \text { for } b^{2}=4 a c \tag{A-8}\\
& \int_{0}^{x} \frac{d x}{a x^{2}+b x+c}=\frac{1}{a(p-q)} \ln \left(\frac{q}{p} \cdot \frac{x-p}{x-q}\right) \quad \text { for } b^{2}>4 a c \tag{A-9}\\
& \int_{0}^{W}(1-\alpha W)^{1 / 2} d W=\frac{2}{3 \alpha}\left[1-(1-\alpha W)^{3 / 2}\right] \tag{A-10}\\
& \text { Table A-1 } \\
& x_{2}-x_{1} \quad y_{2}-y_{1} \quad\left(\frac{\Delta y}{\Delta x}\right)_{2} \\
& 1 \quad x_{2} \quad y_{2} \\
& x_{3}-x_{2} \quad y_{3}-y_{2} \quad\left(\frac{\Delta y}{\Delta x}\right)_{3} \\
& x_{4}-x_{3} \quad y_{4}-y_{3} \quad\left(\frac{\Delta y}{\Delta x}\right)_{4} \\
& \begin{array}{ll}
x_{4} & y_{4}
\end{array} \\
& \left(\frac{d y}{d x}\right)_{2} \\
& x_{3} \quad y_{3} \tag{dy}\\
& \left(\frac{\boldsymbol{\Delta y}}{\boldsymbol{\Delta x}}\right)_{4} \\
& \left(\frac{d y}{d x}\right)_{4}
\end{align*}
$$

Ideal Gas Constant

$$
\begin{array}{ll}
R=\frac{8.314 \mathrm{kPa} \cdot \mathrm{dm}^{3}}{\mathrm{~mol} \cdot \mathrm{~K}} & R=\frac{1.987 \mathrm{Btu}}{\mathrm{lb} \mathrm{~mol} \cdot{ }^{\circ} \mathrm{R}} \\
R=\frac{0.73 \mathrm{ft}^{3} \cdot \mathrm{~atm}}{\mathrm{lb} \mathrm{~mol} \cdot{ }^{\circ} \mathrm{R}} & R=\frac{8.3144 \mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} \\
R=0.082 \frac{\mathrm{dm}^{3} \cdot \mathrm{~atm}}{\mathrm{~mol} \mathrm{~K}^{2}}=\frac{0.082 \mathrm{~m}^{3} \cdot \mathrm{~atm}}{m o l \mathrm{~K}^{-}} & R=\frac{1.987 \mathrm{cal}}{\mathrm{~mol} \mathrm{~K}}
\end{array}
$$

