

$$
\frac{\text { UNIVERSITY }}{\text { JOHANNESBURG }}
$$

University of Johannesburg College of Business and Economics School of Economics
 Main Exam
 Quantitative Economics (QTE 3BB3) Time:3 Hours
 100 Marks

Assesors: Prof B.D. Simo-Kengne and Mr T Mboweni Internal Examiner:Dr Josine Uwilingiye External Examiner:Dr G. Aye

October 18, 2019

Instructions:

- Read the questions carefully
- This exam consists of three pages
- Write clearly and neatly
- Answer all questions
- Show all calculations
- Use a pen, not a pencil

Question 1

Show that $\mathbb{R}^{2}=\operatorname{span}\left(\left[\begin{array}{c}2 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 3\end{array}\right]\right)$
(5 Marks)

Question 2

(a) Find the LU decomposition of matrix $A=\left[\begin{array}{ccc}2 & 1 & -2 \\ -2 & 3 & -4 \\ 4 & -3 & 0\end{array}\right]$ (10 Marks)
(b) Use the solution in (a) to solve the system $A \mathbf{x}=\mathbf{b}$, where $\mathbf{b}=\left[\begin{array}{c}-3 \\ 1 \\ 0\end{array}\right]$ (5 Marks)

Question 3

Let

$$
A=\left[\begin{array}{cccc}
1 & 1 & 0 & 1 \\
0 & 1 & -1 & 1 \\
0 & 1 & -1 & -1
\end{array}\right]
$$

Find the bases for $\operatorname{row}(A), \operatorname{col}(A)$ and $\operatorname{null}(A)$ (10 Marks)

Question 4

Let

$$
A=\left[\begin{array}{ccc}
1 & 2 & 0 \\
-1 & -1 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

Find the eigenvalues and the corresponding eigenspaces of matrix A (10 Marks)

Question 5

Let

$$
A=\left[\begin{array}{ccc}
2 & -3 & 7 \\
0 & 5 & -3 \\
0 & 0 & -1
\end{array}\right]
$$

If possible find matrix P that diagonalize matrix A and find the corresponding diagonal matrix D
(10 Marks)

Question 6

Are the following statements True or False. Justify your answer
(a) If λ_{1} and λ_{2} are eigenvalues of a linear system of DE, a spiral sink satisfies the condition $\lambda_{1}=\lambda_{2}=p+i q$
(2 Marks)
(b) Consider the differential equation $d x / d t=g(x)$. the steady state x_{s} is unstable if and only if $g^{\prime}\left(x_{s}\right)=0$
(2 Marks)
(c) 2 and 0.33 are steady states for the $\mathrm{DE} d x / d t=3 x^{2}(1-x)$.
(2 Marks)
(d) If a quantity grows at a rate proportional to the distance from the threshold value, it can be modelled with logic growth model.
(2 Marks)
(e) $y=\left(t^{2}+5\right) / t$ is a solution of the DE: $y^{\prime}+(y / t)=2$
(2 Marks)
(f) A homogenous DE is also a linear DE (2 Marks)
(12 Marks)

Question 7

Suppose that you took out college loans totalling R90,000 with interest of 8.5%. You have an online payment plan which continuously deducts money from your bank account at a rate which comes out to R16,000 per year. How long will it take you to pay off the loan? (10 Marks)

Question 8

Solve the following DE and system of linear DEs
(a) $y^{\prime \prime}+4 y=x e^{x}+\cos 2 x$
(6 Marks)
(b) $\frac{d^{2} y}{d t^{2}}-2 \frac{d t}{d y}+y=t+\cos t$
(6 Marks)
(c) $3 x y+y^{2}+\left(x^{2}+x y\right) y^{\prime}=0$
(4 Marks)
(d) $9 \frac{d^{2} y}{d t^{2}}-12 \frac{d t}{d y}+4 y=0$
(4 Marks)
(e)

$$
\begin{aligned}
& y_{1}^{\prime}=2 y_{1}+4 y_{2} \\
& y_{2}^{\prime}=y_{1}+3 y_{2}
\end{aligned}
$$

with initial conditions $y_{1}(0)=0, y_{2}(0)=0$. Note: $y_{1}^{\prime}=\frac{d y_{1}}{d z}, y_{2}^{\prime}=\frac{d y_{2}}{d z}$ (8 Marks)
(28 Marks)

