| PROGRAM | : NATIONAL DIPLOMA <br> ENGINEERING: ELECTRICAL <br> ENGINEERING: COMPUTER SYSTEMS <br> ENGINEERING: MECHANICAL |
| :---: | :---: |
| SUBJECT | ELECTROTECHNOLOGY II ELECTRICAL ENGINEERING II |
| CODE | : ELT2211 |
|  | SUPPLEMENTARY EXAMINATION |
| DATE | : |
| DURATION | (3HRS ) |
| WEIGHT | $40: 60$ |
| TOTAL MARKS | 105 |
| EXAMINER | DR. NE MABUNDA |
| MODERATOR | MR. TF MAZIBUKO |
| NUMBER OF PAGES | 9 PAGES AND 1 ANSWER SHEET |

## INSTRUCTIONS

1. THE ANSWER SHEET MUST BE HANDED IN TOGETHER WITH THE SCRIPT
2. POCKET CALCULATORS PERMITTED.
3. ATTEMPT ALL THE QUESTIONS.

## INSTRUCTIONS TO CANDIDATES:

1. TEAR OFF ANSWER SHEET AND SUBMIT IT WITH YOUR SCRIPT.
2. POCKET CALCULATORS PERMITTED.
3. ONLY DRAWINGS MAY BE IN PENCIL.
4. ANSWERS WITH NO UNITS ARE ASSUMED TO BE INCORRECT THEREFORE NO UNITS, NO MARKS.
5. GIVE FINAL COMPLEX NUMBER ANSWER IN POLAR FORM.
6. QUESTIONS THAT ARE NOT CLEARLY NUMBERED WILL NOT BE MARKED.
7. ALL STUDENTS MUST DO ALL QUESTIONS
8. KEEP PARTS OF THE QUESTION TOGETHER AND WORK FROM TOP TO BOTTOM AND NOT ALL OVER THE PAGE.
9. START EACH STEP ON A NEW LINE
10. ANY ROUGH WORK NOT TO BE MARKED MUST BE CANCELLED WITH A SINGLE DIAGONAL LINE.
11. ONE MARK EQUALS ONE PERCENT

## SECTION A

This section is to be answered on the sheet provided.

## QUESTION 1 - TRUE OR FALSE STATEMENTS

Negative marking applies for this question.
Answer true for a statement which you agree with and false to statements that you disagree with. A correct answer results in one mark allocated to you while an incorrect answer will result in half a mark being deducted.
1.1. A variac is used to obtain variable DC voltage in an AC circuit. T/F
1.2. If the inductance is changed from $0,3 \mathrm{H}$ to $0,7 \mathrm{H}$, the inductive reactance will increase in a DC circuit.
1.3. If an ammeter with a broken fuse is connected in a circuit to measure its AC current, the ammeter will display 0A and current will not flow through this section where the ammeter is connected.
1.4. In a short transmission line network, the efficiency is taken as the received power divided by the sending power.

$$
\mathrm{T} / \mathrm{F}
$$

1.5. A circuit has a capacitor in series with an inductor. A complex wave is applied to this series circuit. The complex wave contains a DC voltage component. The expression for the resultant current wave would however not contain a DC component due to the capacitor.

T/F
1.6. Series and parallel resonance are similar in that both exhibit a peak total power dissipation when the power factor is at unity.

T/F

# ELECTRICAL ENGINEERING II/ ELECTROTECHNOLOGY II ELT2211 SUPPLEMENTARY EXAMINATION 

## QUESTION 1 (Continued)

1.7. Two wattmeters are connected to a delta load. The reading on the one wattmeter is 10 kW . The total power consumed by the load is 26 kW . Thus the reading on the other cannot be 16 kW .
1.8. Power factor correction should be accomplished in many factories to reduce the current requirement so as to assist with Eskom's recent power shortages.
1.9. A high value of apparent power does not affect the recent electricity shortages that Eskom is dealing with. Eskom is only interested in the real power which is measured in Watts.
1.10. A complex wave consists of many sine waves that often have differing amplitude and frequency.

## QUESTION 2 - MULTIPLE CHOICE

Choose the most correct answer and mark an x over the corresponding letter on your answer sheet (rough work can be done at the back of the answer script).

2.1 Using Figure 1, choose the most correct answer and mark an $x$ over the corresponding letter on your answer sheet (rough work can be done at the back of your answer script).
2.1.1 Which of the following ranges would you find the Thevenin's impedance?

| A) $\mathrm{x} \angle \phi \Omega$ | $1 \leq \mathrm{x} \leq 300$ | $;-120^{\circ} \leq \phi \leq 120^{\circ}$ |
| :--- | :--- | :--- | :--- |
| B) $\mathrm{x} \angle \phi \Omega$ | $301 \leq \mathrm{x} \leq 900$ | $;-120^{\circ} \leq \phi \leq 120^{\circ}$ |
| C) $\mathrm{x} \angle \phi \Omega$ | $901 \leq \mathrm{x} \leq 2500$ | $;-120^{\circ} \leq \phi \leq 120^{\circ}$ |
| D) $\mathrm{x} \angle \phi \Omega$ | $2501 \leq \mathrm{x} \leq 3000$ | $;-120^{\circ} \leq \phi \leq 120^{\circ}$ |

E) $\mathrm{x} \angle \phi \Omega \quad 3001 \leq \mathrm{x} \leq 4000 \quad ; \quad-120^{\circ} \leq \phi \leq 120^{\circ}$
2.1.2 Which of the following ranges would you find the Thevenin's equivalent EMF?
A) $\mathrm{x} \angle \phi \mathrm{V}$
$0 \leq \mathrm{x} \leq 10 \quad ;-120^{\circ} \leq \phi \leq 120^{\circ}$
B) $x \angle \phi \mathrm{~V}$
$10,1 \leq x \leq 25$
; $-120^{\circ} \leq \phi \leq 120^{\circ}$
C) $x \angle \phi \mathrm{~V}$
$25,1 \leq \mathrm{x} \leq 40 \quad ; \quad-120^{\circ} \leq \phi \leq 120^{\circ}$
D) $x \angle \phi \mathrm{~V}$
$40,1 \leq \mathrm{x} \leq 60 \quad ;-120^{\circ} \leq \phi \leq 120^{\circ}$
E) $\mathrm{x} \angle \phi \mathrm{V}$
$60,1 \leq \mathrm{x} \leq 130 \quad ;-120^{\circ} \leq \phi \leq 120^{\circ}$
2.1.3 Which of the following load impedances will allow 25 mA to flow through the load at an angle of $15^{\circ}$ ?
A) $1,57 \angle-115,5^{\circ} \mathrm{k} \Omega$
B) $2,18 \angle 13,1^{\circ} \mathrm{k} \Omega$
C) $5,48 \angle 26,1^{\circ} \mathrm{k} \Omega$
D) $1,57 \angle 115,5^{\circ} \mathrm{k} \Omega$
E) $5,48 \angle 26,1^{\circ} \mathrm{k} \Omega$
2.2 Convert the following star network (Figure 2.2) to an equivalent delta and answer the questions

Figure 2.2


# ELECTRICAL ENGINEERING II/ ELECTROTECHNOLOGY II ELT2211 SUPPLEMENTARY EXAMINATION 

2.2.1 What is the value of $\mathrm{Z}_{\mathrm{AB}}$ and $\mathrm{Z}_{\mathrm{BC}}$ ?
A) $\mathrm{Z}_{\mathrm{A}}: \mathrm{x} \angle \phi \Omega$
$0 \leq x \leq 1500$
; $-120^{\circ} \leq \phi \leq 120^{\circ}$
$\mathrm{Z}_{\mathrm{B}}: \mathrm{x} \angle \phi \Omega \quad 0 \leq \mathrm{x} \leq 1500 \quad ;-120^{\circ} \leq \phi \leq 120^{\circ}$
B) $\mathrm{Z}_{\mathrm{A}}: \mathrm{x} \angle \phi \mathrm{k} \Omega \quad 1,51 \leq \mathrm{x} \leq 8 \quad ;-120^{\circ} \leq \phi \leq 120^{\circ}$
$\mathrm{Z}_{\mathrm{B}}: \mathrm{x} \angle \phi \mathrm{k} \Omega \quad 1,51 \leq \mathrm{x} \leq 8 \quad ; \quad-120^{\circ} \leq \phi \leq 120^{\circ}$
C) $\mathrm{Z}_{\mathrm{A}}: \mathrm{x} \angle \phi \mathrm{k} \Omega \quad 8,1 \leq \mathrm{x} \leq 15 \quad ;-120^{\circ} \leq \phi \leq 120^{\circ}$
$\mathrm{Z}_{\mathrm{B}}: \mathrm{x} \angle \phi \mathrm{k} \Omega \quad 8,1 \leq \mathrm{x} \leq 15 \quad ; \quad-120^{\circ} \leq \phi \leq 120^{\circ}$
D) $\mathrm{Z}_{\mathrm{A}}: \mathrm{x} \angle \phi \mathrm{k} \Omega \quad 15,1 \leq \mathrm{x} \leq 27 \quad ;-120^{\circ} \leq \phi \leq 120^{\circ}$
$\mathrm{Z}_{\mathrm{B}}: \mathrm{x} \angle \phi \mathrm{k} \Omega \quad 15,1 \leq \mathrm{x} \leq 27 \quad ;-120^{\circ} \leq \phi \leq 120^{\circ}$
E) $\mathrm{Z}_{\mathrm{A}}: \mathrm{x} \angle \phi \mathrm{k} \Omega \quad 27,1 \leq \mathrm{x} \leq 54 \quad ;-120^{\circ} \leq \phi \leq 120^{\circ}$
$\mathrm{Z}_{\mathrm{B}}: \mathrm{x} \angle \phi \mathrm{k} \Omega \quad 27,1 \leq \mathrm{x} \leq 54 \quad ; \quad-120^{\circ} \leq \phi \leq 120^{\circ} \quad=$
2.2.2 What is the power dissipated in $\mathrm{Z}_{\mathrm{AB}}$ ?
A) $0,1 \mathrm{~W} \leq$ real power $\leq 500 \mathrm{~W}$
B) $5 \mathrm{~kW} \leq$ real power $\leq 1 \mathrm{MW}$
C) $1,1 \mathrm{MW} \leq$ real power $\leq 2,8 \mathrm{MW}$
D) $2,81 \mathrm{MW} \leq$ real power $\leq 4,9 \mathrm{MW}$
E) More than $4,91 \mathrm{MW}$
2.3 A $120 \mathrm{kVA}, 4,4 \mathrm{kV} / 660 \mathrm{~V}, 50 \mathrm{~Hz}$ single-phase transformer has 180 secondary turns. Neglect losses and calculate the following:
2.3.1 The primary current $\mathrm{I}_{1}$ and the maximum value of flux present.
A) Less than 5A

Less than 10 mWb
B) Between $5,1 \mathrm{~A}$ and 10 A

Between 0 and 30 mWb
C) Between $10,1 \mathrm{~A}$ and 25 A

Between 0 and 100 mWb
D) Between $25,1 \mathrm{~A}$ and 50 A

Between 10 mWb and 30 mWb
E) More than 25 A

More than 30 mWb
2.4 A circuit that consists of a parallel tank circuit and a series connected resistor was given. The parallel section contains an inductor of $0,5 \mathrm{H}$ with an internal resistance and load resistance totaling $10 \Omega$. The other branch consists of a capacitor of unknown value. The supply voltage is 150 V at a frequency of 60 Hz . The series connected resistor has an unknown value. Calculate the following:
2.4.1 The value of capacitance required in order for resonance to occur. (Q-factor needs to be calculated)
A) $3 \leq$ Q-factor $\leq 9,9$
; $1 \leq$ Capacitance $(\mu \mathrm{F}) \leq 20$
B) $10 \leq$ Q-factor $\leq 17 \quad ; \quad 0,1 \leq$ Capacitance $(\mu \mathrm{F}) \leq 13$
C) $17,1 \leq$ Q-factor $\leq 20 \quad ; \quad 15,1 \leq$ Capacitance $(\mu \mathrm{F}) \leq 25$
D) $17,1 \leq$ Q-factor $\leq 20 \quad ; \quad 10 \leq$ Capacitance $(\mu \mathrm{F}) \leq 15$
E) $10 \leq$ Q-factor $\leq 17 \quad ; \quad 14 \leq$ Capacitance $(\mu \mathrm{F}) \leq 76$
2.4.2 The dynamic impedance of the resonant section of the circuit as well as the total current if the voltage across the capacitor is 90 V
A) Less than $700 \Omega$

Less than 100 mA
B) Between $701 \Omega$ and $1,4 \mathrm{k} \Omega$

Less than 2A
C) Between $1,41 \mathrm{k} \Omega$ and $3,4 \mathrm{k} \Omega$

Less than 2 A
D) Between $3,41 \Omega$ and $8 \mathrm{k} \Omega$

Less than $0,2 \mathrm{~A}$
E) More than $8 \mathrm{k} \Omega$

More than 2 mA
2.4.3 The power dissipated in the series resistor:
A) $2.1 \mathrm{~W} \leq$ real power $\leq 20 \mathrm{~W}$
C) $21 \mathrm{~W} \leq$ real power $\leq 90 \mathrm{~W}$
C) $91 \mathrm{~W} \leq$ real power $\leq 200 \mathrm{~W}$
D) less than 2 W
E) More than 200 W
2.5 A series circuit consists of a non-inductive resistor of $10 \Omega$, two series inductors of $0,2 \mathrm{H}$ and $0,3 \mathrm{H}$ and two series capacitors of $10 \mu \mathrm{~F}$ and $14 \mu \mathrm{~F}$. What is the resonant frequency for this series circuit?
A) Less than 40 Hz
D) Between $40,1 \mathrm{~Hz}$ and 60 Hz
C) Between 61 Hz and 91 Hz
D) More than 91 Hz
E) Cannot be calculated

## SECTION B

This section is to be answered on your answer script.

## QUESTION 3

3.1 Two coils are connected in series across a 240 V 50 Hz supply as shown in Figure 3.1. The resistance of coil A is $5 \Omega$ and the inductance of coil B is $0,015 \mathrm{H}$. If the input from the supply is 3 kW and 2 kVAR , calculate:
3.1.1 The inductance of coil A and the resistance of coil B
3.1.2 The voltage across each coil.

Figure 3.1


Figure 3.2


$$
i=20+100 \operatorname{Sin} \omega t+75 \operatorname{Sin}(3 \omega t-45) m A
$$

3.2 Use Figure 3.2 to calculate the following:
3.2.1 The expression for the voltage wave that is present.
3.2.2 The circuits power factor.

## QUESTION 4

4.1 A three-phase supply feeds the following two loads:
(i) A three-phase balanced star connected motor with an impedances of $5 \angle 78^{\circ} \Omega$ per phase.
(ii) A balanced delta-connected machine of unknown impedance.
4.1.1 If an engineer wanted to measure the power of only the delta section, where would he place the TWO wattmeters? Sketch a circuit diagram of this layout including both loads. Show your two wattmeters and their connections clearly. Remember to label the impedances, currents and lines. Use at least 10 lines for your diagram.

### 4.1.2 If the engineer now wanted to measure the complete power with his TWO wattmeters, where would he connect them now? Redraw the circuit.

4.1.3 If the two wattmeters read 5 kW and 8 kW respectively, what is the value of the total
real and reactive power for this combined load?.

4.1.4 State Kirchhoff's current law.

## QUESTION 5

A short transmission line having a total resistance of $5 \Omega$, and a total inductance of $0,03 \mathrm{H}$ supplies a 15 MW load at a power factor of 0,84 lagging. If the frequency of the system is 50 Hz , and the receiving voltage is 33 kV , determine:
5.1 The sending end voltage.
5.2 The efficiency of the line.
5.3 The per unit voltage regulation of the line.

## QUESTION 6

## CLOUD STORED SOLAR PROFILE



Figure 6.1
Figure 6.1 illustrates a daily output power response curve of a solar panel that connects to a pure resistive load of $25 \Omega$.
6.1 Determine the 12-hour (Daylight) average voltage.
6.2 Calculate the total average heating power and the peak current that this system produce?

STUDENT SURNAME: $\qquad$ STUDENT NUMBER: $\qquad$

## ANSWER SHEET

(This sheet must be handed in with your examination script)

## QUESTION 1

| 1.1 | True | False |
| :--- | :--- | :--- |
| 1.2 | True | False |
| 1.3 | True | False |
| 1.4 | True | False |
| 1.5 | True | False |


| 1.6 | True | False |
| :---: | :--- | :--- |
| 1.7 | True | False |
| 1.8 | True | False |
| 1.9 | True | False |
| 1.10 | True | False |

## QUESTION 2

| 2.1 .1 | $A$ | $B$ | $C$ | $D$ | $E$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 2.1 .2 | $A$ | $B$ | $C$ | $D$ | $E$ |
| 2.1 .3 | $A$ | $B$ | $C$ | $D$ | $E$ |
| 2.2 .1 | $A$ | $B$ | $C$ | $D$ | $E$ |
| 2.2 .2 | $A$ | $B$ | $C$ | $D$ | $E$ |
| 2.3 .1 | $A$ | $B$ | $C$ | $D$ | $E$ |
| 2.4 .1 | $A$ | $B$ | $C$ | $D$ | $E$ |
| 2.4 .2 | $A$ | $B$ | $C$ | $D$ | $E$ |
| 2.4 .3 | $A$ | $B$ | $C$ | $D$ | $E$ |
| 2.5 | $A$ | $B$ | $C$ | $D$ | $E$ |

