
| PROGRAM             | : | B TECH<br>ELECTRICAL ENGINEERING                                                                             |
|---------------------|---|--------------------------------------------------------------------------------------------------------------|
| <u>SUBJECT</u>      | : | RADIO ENGINEERING IV                                                                                         |
| CODE                | : | EER411                                                                                                       |
| DATE                | : | SUPPLEMENTARY EXAMINATION<br>JULY 2019                                                                       |
| <b>DURATION</b>     | : | 3 HOURS                                                                                                      |
| <u>WEIGHT</u>       | : | 40 : 60                                                                                                      |
| FULL MARKS          | : | 100                                                                                                          |
| TOTAL MARKS         | : | 100                                                                                                          |
|                     |   |                                                                                                              |
| EXAMINERS           | : | PROF THOKOZANI C SHONGWE                                                                                     |
| <b>MODERATOR</b>    | : | DR EBENEZER ESENOGHO                                                                                         |
| NUMBER OF PAGES     | : | 4 PAGES, INCLUDING 1 PAGE OF FORMULAS                                                                        |
| <b>INSTRUCTIONS</b> | : | CALCULATORS ARE PERMITTED (ONLY ONE PER<br>STUDENT)<br>USE ONLY THE ANSWER SHEET PROVIDED WITH THIS<br>PAPER |

# **INSTRUCTIONS TO CANDIDATES:**

- 1. 100 MARKS = 100%
- 2. ATTEMPT ALL QUESTIONS.
- 3. THEORY TYPE QUESTIONS MUST BE ANSWERED IN POINT FORM BY CAREFULLY CONSIDERING THE MARK ALLOCATION.
- 4. QUESTIONS MAY BE ANSWERED IN ANY ORDER, BUT ALL PARTS OF QUESTION MUST BE KEPT TOGETHER.
- 5. ALL DIAGRAMS AND SKETCHES MUST BE DRAWN NEATLY AND IN PROPORTION.
- 6. ALL DIAGRAMS AND SKETCHES MUST BE LABELLED CLEARLY.
- 7. ALL WORK DONE IN PENCIL EXCEPT DIAGRAMS AND SKETCHES WILL BE CONSIDERED AS ROUGH WORK.
- 8. NOTE: MARKS WILL BE DEDUCTED FOR WORK WHICH IS POORLY PRESENTED.
- 9. NEGATIVE MARKING APPLIES IF YOUR ANSWER DOES NOT COMPLY WITH THE DETAIL REQUIRED AS REQUESTED IN CERTAIN QUESTIONS.

#### Question 1

Given the signal below,



calculate the:

- (1) Fourier coefficients and hence give the Fourier series the signal.
- (2) Exponential Fourier coefficients of the signal.

(30+20)

# **Question 2**

- (a) For a standard telephone circuit with a signal-to-noise power ratio of 1000 (30 dB) and a bandwidth of 2.7 kHz, determine the maximum information capacity, in bits/s of the channel.
- (b) A communications channel can transmit up to 2 Mbps of data, given a bandwidth of 1 MHz, determine the signal-to-noise ratio.
- (c) Determine (i) the peak frequency deviation, (ii) minimum bandwidth, and (iii) baud for a binary FSK signal with a mark frequency of 49 kHz, a space frequency of 51 kHz, and an input bit rate of 2 kbps.

(2+2+6)

# Question 3

Determine the (i) baud and (ii) minimum bandwidth necessary to pass a 10 kbps binary signal using:

- (a) Amplitude shift keying (ASK).
- (b) Binary phase shift keying (BPSK).
- (c) Binary frequency shift keying (BFSK).
- (d) Quaternary (4) phase shift keying (QPSK).
- (e) A digital modulation with M = 8 levels (*M*-ary modulation).

(4+4+4+4+4)

# **Question 4**

- a) Sketch and explain the construction of a log-periodic dipole array antenna.
- b) An X-band (10 GHz) dish antenna must have a  $1^0$  beam width.
  - (i) What must be the diameter of the parabolic dish?
  - (ii) If 55% efficient, what will be the antenna gain?

(10+10)

#### TOTAL MARKS : 100

# **ANNEXURE**

A. If the function x is assumed to be continuous over the range [- $\pi$ ,  $\pi$ ], that is, period T= 2 $\pi$ , then we have

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} x(t) dt \qquad = \frac{1}{\pi} \int_{0}^{\pi} x(t) dt$$

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} x(t) \cos kt dt$$

$$=\frac{2}{\pi}\int_{0}^{\pi}x(t)\cos ktdt$$

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} x(t) \sin kt dt = \frac{2}{\pi} \int_{0}^{\pi} x(t) \sin kt dt$$

# **B. EULER'S FORMULA**

$$e^{\pm j\alpha} = \cos(\alpha) \pm j\sin(\alpha)$$
$$\cos(\alpha) = \frac{1}{2} (e^{j\alpha} + e^{-j\alpha}), \quad \sin(\alpha) = \frac{1}{2j} (e^{j\alpha} - e^{-j\alpha})$$

where  $\alpha = k\omega_o t$  in the signal Fourier series expansion formula