
PROGRAM	:	B TECH ELECTRICAL ENGINEERING
<u>SUBJECT</u>	:	RADIO ENGINEERING IV
CODE	:	EER411
DATE	:	MAIN EXAMINATION 25 MAY 2019
DURATION	:	12:30 - 15:30
<u>WEIGHT</u>	:	40 : 60
FULL MARKS	:	100
TOTAL MARKS	:	100
EXAMINERS	:	PROF THOKOZANI C SHONGWE
MODERATOR	:	DR EBENEZER ESENOGHO
NUMBER OF PAGES	:	4 PAGES, INCLUDING 1 PAGE OF FORMULAS
INSTRUCTIONS	:	STUDENT)
	:	USE ONLY THE ANSWER SHEET PROVIDED WITH THIS PAPER

INSTRUCTIONS TO CANDIDATES:

- 1. 100 MARKS = 100%
- 2. ATTEMPT ALL QUESTIONS.
- 3. THEORY TYPE QUESTIONS MUST BE ANSWERED IN POINT FORM BY CAREFULLY CONSIDERING THE MARK ALLOCATION.
- 4. QUESTIONS MAY BE ANSWERED IN ANY ORDER, BUT ALL PARTS OF QUESTION MUST BE KEPT TOGETHER.
- 5. ALL DIAGRAMS AND SKETCHES MUST BE DRAWN NEATLY AND IN PROPORTION.
- 6. ALL DIAGRAMS AND SKETCHES MUST BE LABELLED CLEARLY.
- 7. ALL WORK DONE IN PENCIL EXCEPT DIAGRAMS AND SKETCHES WILL BE CONSIDERED AS ROUGH WORK.
- 8. NOTE: MARKS WILL BE DEDUCTED FOR WORK WHICH IS POORLY PRESENTED.
- 9. NEGATIVE MARKING APPLIES IF YOUR ANSWER DOES NOT COMPLY WITH THE DETAIL REQUIRED AS REQUESTED IN CERTAIN QUESTIONS.

Question 1

Given the signal below,

calculate the:

- (1) Fourier coefficients and hence give the Fourier series the signal.
- (2) Exponential Fourier coefficients of the signal.

(30+20)

Question 2

(a) Determine the Nyquist rate of the following signal,

 $x(t) = 3 \cos (50\pi t + 3) + 2 \cos (100 \pi t) - \cos (300\pi t + \pi/2).$

- (b) For a Telephone spectrum [300 Hz, 3400 Hz]:
 - 1. Identify the minimum sampling frequency.
 - 2. If L = 256 levels are used in the quantization
 - a. Calculate the transmission rate R in bits per second.
 - b. Calculate the minimum PCM bandwidth.
- (c) A signal m(t) of bandwidth B = 4 kHz is transmitted using a binary companded PCM with $\mu = 100$. Compare the case of L = 64 with the case of L = 256 from the point of view of transmission bandwidth and the output SNR.
- (d) A binary channel with bit rate Rb=36000 bits/s is available for PCM transmission. Find appropriate values of the sampling rate fs, the quantizing level *L*, and the binary digits *n*, assuming the signal bandwidth is B = 3.2 kHz.

(3+6+6+7)

Question 3

- a) Define the following terms in the context of antenna design and construction.
 - i. Polarization
 - ii. Isotropic
 - iii. Power radiation pattern
 - iv. lobes
 - v. Directivity
 - vi. Beamwidth
- b) Sketch and explain the construction of a log-periodic dipole array antenna.
- c) Estimate the power gain and beamwidth for NASA's 200 ft parabolic antenna used in the deep space network for tracking spacecraft at planetary distance. Use 8.4 GHz (X-band) frequency.

(12+10+6)

TOTAL MARKS : 100

ANNEXURE

A. If the function x is assumed to be continuous over the range [- π , π], that is, period T= 2 π , then we have

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} x(t) dt \qquad = \frac{1}{\pi} \int_{0}^{\pi} x(t) dt$$

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} x(t) \cos kt dt \qquad = \frac{2}{\pi} \int_{0}^{\pi} x(t) \cos kt dt$$

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} x(t) \sin kt dt = \frac{2}{\pi} \int_{0}^{\pi} x(t) \sin kt dt$$

B. EULER'S FORMULA

$$e^{\pm j\alpha} = \cos(\alpha) \pm j\sin(\alpha)$$

$$\cos(\alpha) = \frac{1}{2} \left(e^{j\alpha} + e^{-j\alpha} \right), \quad \sin(\alpha) = \frac{1}{2j} \left(e^{j\alpha} - e^{-j\alpha} \right)$$

where $\alpha = k\omega_o t$ in the signal Fourier series expansion formula