SCHOOL OF ECONOMICS

AUCKLAND PARK KINGSWAY CAMPUS EXAM NOVEMBER 2019

Module Name: Financial Economics B
Module Code: FNN8X02
Honours: Financial Economics
Duration:
3 H

Mark: 90

Internal Examiner: Prof Franck Adekambi

Internal Moderator:

External Moderator: Dr Khouzeima Moutanabbir

Instructions:

1. The exam contributes 50 percent of the course mark.
2. Answer all questions.
3. This paper consists of 4 pages.
4. Please round off to 2 decimal places.

Initials \& Surname:

Student number:

Telephone number:

SECTION	TOTAL	MARK	EXTERNAL
Q1	12		
Q2	20		
Q3	14		
Q4	14		
Q5	20		
Q6	10		
TOTAL	90		

Q1) (12 marks)

The price of a non-dividend paying stock at time $1, S_{1}$, is related to the price at time $0, S_{0}$, as follows:
$S_{1}=u S_{0}$ with probability p and $S_{1}=d S_{0}$ with probability $(1-p)$. The continuously compounded rate of return on a risk-free asset is r.
(i) Derive an expression for the replicating portfolio for a European call option written on the stock that expires at time 1 and has a strike price of k, where $d S_{0}<k<u S_{0}$. [5]
(ii) Show that the price of the option in (i) can be written as the discounted expected payoff under a probability measure Q. Hence find an expression for the probability, q, of an upward move in the stock price under Q. [7]
(iii) Explain the relationship between the Q probability measure in (ii) and the real world probability measure. Explain what relationship you would expect q and p to have if all investors are (a) risk averse, (b) risk seeking, or (c) risk-neutral. [5]

Q2) (20 marks)

For a two-period binomial model for stock prices, you are given:
(i) Each period is 8 months.
(ii) The current price for a non-dividend-paying stock is $\$ 80.00$.
(iii) $u=1.181$, where u is one plus the rate of capital gain on the stock per period if the price goes up.
(iv) $d=0.890$, where d is one plus the rate of capital loss on the stock per period if the price goes down.
(v) The continuously compounded risk-free interest rate is 4%.
a) Calculate the current price of a one-year American put option on the stock with a strike price of $\$ 95.00$.

Q3) (15 marks)

A loan is being repaid with 25 annual payments of 300 each. With the 10 th payment, the borrower pays an extra 1000, and then repays the balance over 10 years with a revised annual payment. The effective rate of interest is 8%.

a) Calculate the amount of the revised annual payment.

Q4) (14 marks)

An investor buys, for a premium of 187.06, a call option on a non-dividend paying stock whose current price is 5,000 . The strike price of the call is 5,250 and the time to expiry is 6 months. The risk free rate of return over this period is 5% p.a.

The Black-Scholes formula for the value of a European call option on a non-dividend paying stock at time t can be written as:

$$
c=S e^{-\delta(T-t)} \boldsymbol{\phi}\left(d_{1}\right)-K e^{-r(T-t)} \boldsymbol{\phi}\left(d_{2}\right),
$$

where

$$
\begin{aligned}
& d_{1}=\frac{\ln (S / K)+\left(r+\sigma^{2} / 2\right)(T-t)}{\sigma \sqrt{T-t}}, \\
& d_{2}=\frac{\ln (S / K)+\left(r-\sigma^{2} / 2\right)(T-t)}{\sigma \sqrt{T-t}},
\end{aligned}
$$

$K=$ strike price, $T=$ time of maturity,$S=$ price of stock at time $t, r=$ risk-free rate, $\sigma=$ volatility, $\boldsymbol{\delta}=$ dividend rate.
and $\boldsymbol{\phi}(\cdot)=$ cumulative distribution function of the standard normal distribution.
(i) Calculate the price of a put option with the same time to maturity and strike price as the call. [2]
(ii) The investor buys a put option with strike price 4,750 with the same time to maturity. Calculate the price of the put option if the implied volatility were the same as that in (i).
[You need to estimate the implied volatility to within 1% p.a. of the correct value.
Hint: Use the values $\mathbf{0 . 1 5}$ and $\mathbf{0 . 1 8}$ for the linear interpolation of the volatility] [10]
(iii) Explain why the market price for the put might differ from that calculated in (ii). [2]

Q5) (25 marks)

Consider two nondividend-paying assets X and Y, whose prices are driven by the same Brownian motion Z. You are given that the assets X and Y satisfy the stochastic differential equations:

$$
\begin{gathered}
\frac{d X(t)}{X(t)}=0.07 d t+0.12 d Z(t) \\
\frac{d Y(t)}{Y(t)}=G d t+H d Z(t), t \geq 0 .
\end{gathered}
$$

where G and H are constants.
You are also given:
(i) $d(\ln [Y(t)])=0.06 d t+\sigma d Z(t)$
(ii) The continuously compounded risk-free interest rate is 4%.
(iii) $\sigma<0.25$
a) Determine \boldsymbol{G}.

Q6) (10 marks)

Assume that the Black-Scholes framework holds. The price of a nondividend-paying stock is $\$ 35.00$. The price of a put option on this stock is $\$ 7.00$.

You are given:
(i) $\Delta=-0.27$
(ii) $\Gamma=0.15$
a) Define in words the Greeks, $\Delta, \Gamma, \Theta, V e g a, R h o=\rho, P s i=\psi$ for an individual derivative. [6]
b) Explain how and why can be used in the risk management of a portfolio that is delta-hedged. [2]
c) Using the delta-gamma approximation, determine the price of the put option if the stock price changes to $\$ 36.50$. [2]

