
PROGRAM : BACHELOR OF ENGINEERING TECHNOLOGY
CHEMICAL ENGINEERING
SUBJECT : CHEMICAL THERMODYNAMICS 2A
CODE : CTDCHA2
DATE : WINTER EXAMINATION1 JUNE 2019
DURATION : (SESSION 1) 08:30-11:30
WEIGHT : $40: 60$
TOTAL MARKS : 100
EXAMINER(S) : MRS N SEEDAT
MODERATOR : DR R HUBERTS
NUMBER OF PAGES : 8 PAGES
REQUIREMENTS : Use of scientific (non-programmable) calculator is permitted (only one per candidate); graph paper

HINTS AND INSTRUCTIONS TO CANDIDATE(S):

- Purpose of assessment is to determine not only if you can write down an answer, but also to assess whether you understand the concepts, principles and expressions involved. Set out solutions in a logical and concise manner with justification (assumptions) for the steps followed.
- ATTEMPT ALL QUESTIONS. Please answer each question to the best of your ability.
- Write your details (module name and code, ID number, student number etc.) on script(s).
- Number each question clearly; questions may be answered in any order.
- Make sure that you read each question carefully before attempting to answer the question.
- Show all steps (and units) in calculations; this is a 'closed book' test.
- Ensure your responses are legible, clear and include relevant units (where appropriate).
- Answers must be to FOUR significant figures.
- Hand in Graph paper with your answer paper.

Question One

A reciprocating compressor initially contains air in the piston-cylinder at $0.08 \mathrm{~m}^{3}, 0.9$ bar, and $62^{\circ} \mathrm{C}$. The air is reversibly compressed to a final volume of $0.025 \mathrm{~m}^{3}$ according to the equation $\mathrm{PV}^{1.5}=$ constant. Take the molar mass of air as $29 \mathrm{~g} / \mathrm{mol}$, and a C_{v} value for air of $0.736 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$.
1.1 State all assumptions made to solve Questions 1.2-1.6.
1.2 Determine the mass of air in kg .
1.3 Determine the final temperature in K .
1.4 Determine the internal energy change in kJ .
1.5 Determine the work required in kJ .
1.6 Determine the magnitude and direction of any heat transfer in kJ and state if heat is added or removed from the system.
1.7 Determine the effect on Q and W if the process was only 80% efficient.

Question Two

[Total: 18 Marks]
An irreversible heat pump is designed to remove heat from the atmosphere at $7^{\circ} \mathrm{C}$ and to supply $43200 \mathrm{~kJ} / \mathrm{hr}$ of heat to a constant temperature reservoir at 420 K . The efficiency of the heat pump is 80% of that of a Carnot heat pump operating between the same temperatures. The heat pump is driven, through a transmission, by the output of a heat engine which takes heat from a constant temperature reservoir at 1050 K and rejects waste heat to the same 420 K of that of a Carnot heat engine operating between the same temperatures. In addition, the transmission which delivers the actual work output of the heat engine to the heat pump is only 75% efficient.
2.1 Draw a block diagram to depict the process.
[3]
2.2 Determine the power input required for the actual heat pump in kW.
2.3 Determine the rate of heat input from 1050 K reservoir to the actual engine in $\mathrm{kJ} / \mathrm{hr}$.
2.4 Determine the percentage of the total heat supplied to the 420 K reservoir which is delivered by the heat pump.

Question Three

[Total: 13 Marks]
It is required to design a process in which acetone is used as a solvent. As part of your safety analysis, you need to ensure that acetone will not boil at process conditions. Apply the Antoine equation. All data required can be found in the appendices.
3.1 Determine the vapour pressure at a temperature at $100^{\circ} \mathrm{C}$.
3.2 Determine the normal boiling point.
3.3 Can acetone be used as a solvent at the operating conditions of $100^{\circ} \mathrm{C}$.

Question Four

[Total: 22 Marks]
Chlorine is produced by the reaction:
$4 \mathrm{HCl}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+2 \mathrm{Cl}_{2(\mathrm{~g})}$
The feed stream consists of $80 \mathrm{~mol} \%-\mathrm{HCl}$ and $20 \mathrm{~mol} \%-\mathrm{O}_{2}$, and it enters the reactor at $120^{\circ} \mathrm{C}$. If the conversion of HCl is 100% and the products leaves the reactor at $500^{\circ} \mathrm{C}$.
4.1 Determine how much heat must be transferred from the reactor per mol of the entering gas mixture.
4.2 Which contains more chemical energy, 1 kmol of HCl or 1 kmol of $\mathrm{H}_{2} \mathrm{O}$?

Data required:
$\mathrm{H}^{\circ}{ }_{\mathrm{f} 298(\mathrm{HCl})}=-92311 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{H}^{\circ}{ }_{\mathrm{f} 298(\mathrm{H} 2 \mathrm{O})}=-241818 \mathrm{~kJ} / \mathrm{mol}$

Component	A	B	C	D
HCl	3.156	0.623×10^{-3}	0	0.151×10^{5}
O_{2}	3.639	0.506×10^{-3}	0	-0.227×10^{5}
$\mathrm{H}_{2} \mathrm{O}$	3.470	1.4550×10^{-3}	0	0.121×10^{5}
Cl_{2}	4.442	0.089×10^{-3}	0	-0.344×10^{5}

$\mathrm{C}_{\mathrm{P}}=\mathrm{A}+\mathrm{BT}+\mathrm{CT}^{2}+\mathrm{DT}^{3}$ with T in K and C_{P} in $\mathrm{J} / \mathrm{mol} \mathrm{K}$

Question Five

[Total: 16 Marks]
The behaviour of gases can correctly be predicted using equations of state. The molar volume of a gas can be determined empirically directly from the equation of state or can be determined from a graphical plot of the equation of state. The behaviour of n-pentane can be describes using the Peng- Robinson equation of state provided below:

$$
P=\frac{R T}{\underline{V}-b}-\frac{a}{\underline{V}(\underline{V}+b)+b(\underline{V}-b)}
$$

The Peng-Robinson parameters for n-pentane at $100^{\circ} \mathrm{C}$ are:
$\mathrm{a}=2.417 \times 10^{12} \mathrm{~Pa} . \mathrm{cm}^{6} / \mathrm{mol}^{2}$
and
$\mathrm{b}=90.18 \mathrm{~cm}^{3} / \mathrm{mol}$
5.1 Determine the pressure of n-pentane at $100^{\circ} \mathrm{C}$ and $100 \mathrm{~cm}^{3} / \mathrm{mol}$ using the PengRobinson equation state.
[4]
5.2 Hence or otherwise plot the pressure as a function of molar volume at a temperature of $100^{\circ} \mathrm{C}$ using the Peng-Robinson equation state (use volume points of $475,480,30$ $00,30200,30400 \mathrm{~cm}^{3} / \mathrm{mol}$).
[10]
5.3 Using the plot generated in Question 5.2, determine the molar volume at 0.095 MPa .

APPENDIX A

USEFUL EQUATIONS AND FORMULAE

$P V=n R T ; \quad \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} ; \quad v=\frac{V^{t}}{m} ; \quad \quad \dot{m}=u A \rho ; \quad \dot{n}=\frac{u A}{v M} ; \rho=v^{-1} ; \quad \dot{V}=\frac{V}{t}$
$\mathrm{t}\left({ }^{\circ} \mathrm{C}\right)=\mathrm{T}(\mathrm{K})-273.15 ; \quad \mathrm{t}\left({ }^{\circ} \mathrm{F}\right)=\mathrm{T}(\mathrm{R})-459.67 ; \quad \mathrm{t}\left({ }^{\circ} \mathrm{F}\right)=1.8 \mathrm{t}\left({ }^{\circ} \mathrm{C}\right)+32 ;$
$P_{g}=\frac{F}{A}=\frac{m g}{A}=\frac{\rho V g}{A}=\frac{A h \rho g}{A} ; \quad P_{a b s}=P_{g}($ or $\rho g h)+P_{a t m}$
Interpolation: $\quad M=\left(\frac{X_{2}-X}{X_{2}-X_{1}}\right) M_{1}+\left(\frac{X-X_{1}}{X_{2}-X_{1}}\right) M_{2} \quad$ OR $\quad M=\frac{M_{1}\left(X_{2}-X\right)+M_{2}\left(X-X_{1}\right)}{X_{2}-X_{1}}$
Double Interpolation:

	X_{1}	X	X_{2}
Y_{1}	$M_{1,1}$		$M_{1,2}$
Y		$M=?$	
Y_{2}	$M_{2,1}$		$M_{2,2}$

$\Delta E_{\text {univ }}=\Delta E_{\text {syst }}+\Delta E_{\text {surr }}=0 ; \quad \eta=\frac{W_{\text {irreversible }} ;}{W_{\text {reversible }}} \quad \quad \frac{d m_{c v}}{d t}=\Delta m=\dot{m}_{\text {out }}-\dot{m}_{\text {in }}$
Energy balance for open systems:

$$
\frac{d(m U)_{c v}}{d t}=-\dot{m} \Delta\left[U+\frac{1}{2} u^{2}+g h\right]+\dot{Q}+\dot{W}
$$

Energy balance for steady-state flow processes: $\quad \Delta \dot{m}\left(H+\frac{1}{2} u^{2}+g h\right)=\dot{Q}+\dot{W}_{s}$
$\underline{\text { Single Phase: } \ln \frac{V_{2}}{V_{1}}=\beta\left(T_{2}-T_{1}\right)-\kappa\left(P_{2}-P_{1}\right), ~\left(\frac{1}{2}\right)}$
Mechanically reversible closed system processes:
Constant $V: \quad Q=n \Delta U=n \int_{T_{1}}^{T_{2}} C_{v} d T=n C_{v} \Delta T$
Constant $P: \quad Q=n \Delta H=n \int_{T_{1}}^{T_{2}} C_{p} d T=n C_{p} \Delta T ; \quad W=-R\left(T_{2}-T_{1}\right)$
Constant T: $\quad Q=-W=R T_{1} \ln \frac{V_{2}}{V_{1}}=-R T_{1} \ln \frac{P_{2}}{P_{1}}=P_{1} V_{1} \ln \frac{V_{2}}{V_{1}}=-P_{1} V_{1} \ln \frac{P_{2}}{P_{1}}$
Adiabatic: $\quad \frac{T_{2}}{T_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{R / C_{V}} ; \quad \frac{T_{2}}{T_{1}}=\left(\frac{P_{2}}{P_{1}}\right)^{R / C_{P}} ; \quad \frac{P_{2}}{P_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{C_{P} / C_{V}} ; \quad \gamma=\frac{C_{P}}{C_{V}} ;$
Adiabatic: $\quad W=\Delta U=C_{V} \Delta T=\frac{R \Delta T}{\gamma-1}=\frac{R\left(T_{2}-T_{1}\right)}{\gamma-1}=\frac{P_{2} V_{2}-P_{1} V_{1}}{\gamma-1}=\frac{P_{1} V_{1}}{\gamma-1}\left[\left(\frac{P_{2}}{P_{1}}\right)^{\gamma-1 / \gamma}-1\right]=\frac{R T_{1}}{\gamma-1}\left[\left(\frac{P_{2}}{P_{1}}\right)^{\gamma-1 / \gamma}-1\right]$

Lee/ Kesler correlation: $Z=Z^{o}+\omega Z^{1}$;
Generalized Pitzer correlation: $Z=1+\left(B^{0}+\omega B^{1}\right) \frac{P_{r}}{T_{r}} ; B^{0}=0.083-\frac{0.422}{T_{r}^{1.6}} ; \quad B^{1}=0.139-\frac{0.172}{T_{r}^{4.2}}$
$\mathrm{IG}: Q=n \Delta H=n \int_{T_{0}}^{T_{1}} \frac{C p^{i g}}{R} d T=n\left[A T_{o}(\tau-1)+\frac{B}{2} T_{o}^{2}\left(\tau^{2}-1\right)+\frac{C}{3} T_{o}^{3}\left(\tau^{3}-1\right)+\frac{D}{T_{o}}\left(\frac{\tau-1}{\tau}\right)\right]=n \frac{\left\langle C_{P}\right\rangle_{H}}{R}\left(T_{1}-\right.$
T_{0}); where, $\tau=\frac{T}{T_{0}}$
$\left\langle C_{P}\right\rangle_{H}=R\left[A+\frac{B}{2} T_{o}(\tau+1)+\frac{C}{3} T_{o}^{2}\left(\tau^{2}+\tau+1\right)+\frac{D}{\tau T_{o}^{2}}\right]$
Clapeyron equation: $\quad \Delta H=T \Delta V \frac{d P^{\text {sat }}}{d T}$
General entropy change: $\Delta S=C_{p} \ln \frac{T_{2}}{T_{1}}-\ln \frac{P_{2}}{P_{1}}$
Entropy change for IG: $\frac{\Delta S}{R}=\frac{\left\langle c_{p}^{i g}\right\rangle_{S}}{R} \ln \frac{T}{T_{o}}-\ln \frac{P}{P_{o}} ; \frac{\left\langle c_{p}^{i g}\right\rangle_{S}}{R}=A+\left[B T_{o}+\left(C T_{o}^{2}+\frac{D}{\tau^{2} T_{o}^{2}}\right)\left(\frac{\tau+1}{\tau}\right)\right]\left(\frac{\tau-1}{\ln \tau}\right)$
For residual properties: $V^{R}=V-V^{i g} ; \quad H^{R}=H-H^{i g} ; \quad G^{R}=R T \ln \phi$

$$
\begin{aligned}
& S^{R}=S-\left(S^{i g}+\frac{R}{M r} \ln \frac{P_{2}}{P_{1}}\right) ; \quad \frac{H^{R}}{R T_{c}}=\left(\frac{H^{R}}{R T_{c}}\right)^{0}+\omega\left(\frac{H^{R}}{R T_{c}}\right)^{1} \quad ; \quad \frac{S^{R}}{R}=\left(\frac{S^{R}}{R}\right)^{0}+\omega\left(\frac{S^{R}}{R}\right)^{1} \\
& \frac{H^{R}}{R T_{c}}=P_{r}\left[\left(0.083-\frac{1.097}{T_{r}^{1.6}}\right)+\omega\left(0.139-\frac{0.894}{T_{r}^{4.2}}\right)\right] ; \quad \frac{S^{R}}{R}=-P_{r}\left[\frac{0.675}{T_{r}^{2.6}}+\omega\left(\frac{0.722}{T_{r}^{5.2}}\right)\right]
\end{aligned}
$$

$$
Z=1+\beta-q \beta \frac{(Z-\beta)}{(Z+\in \beta)(Z+\sigma \beta)}
$$

Fugacity and fugacity coefficient: $\phi=\left(\phi^{0}\right)\left(\phi^{1}\right)^{\omega} ; f=\phi P ; \ln \phi=\sum_{i} X_{i} \ln \phi_{i} ; \ln \phi=\frac{P_{r}}{T_{r}}\left(B^{0}+\omega B^{1}\right)$
$\underline{\text { Raoult's law: } y_{i} P=x_{i} P_{i}^{s a t} \text { where } P=\sum_{i} x_{i} P_{i}^{s a t} \text { or } P=\frac{1}{\sum_{i} y_{i} / P_{i}^{s a t}}}$
Modified Raoult's law: $y_{i} P=x_{i} \gamma_{i} P_{i}^{\text {sat }}$ where $P=\sum_{i} x_{i} \gamma_{i} P_{i}^{\text {sat }}$ or $P=\frac{1}{\sum_{i} y_{i} / \gamma_{i} P_{i}^{s a t}}$

	Table A.1: Conversion Factors	Energy	$1 \mathrm{~J}=1 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}=1 \mathrm{Nm}$
Quantity	Conversion		$\begin{aligned} & =1 \mathrm{~m}^{3} \mathrm{~Pa}=10^{-5} \mathrm{~m}^{3} \text { bar }=10 \mathrm{~cm}^{3} \text { bar } \\ & =9.86923 \mathrm{~cm}^{3}(\mathrm{~atm}) \end{aligned}$
Length	$\begin{aligned} 1 \mathrm{~m} & =100 \mathrm{~cm} \\ & =3.28084(\mathrm{ft})=39.3701(\mathrm{in}) \end{aligned}$		$\begin{aligned} & =10^{7}(\text { dyne }) \mathrm{cm}=10^{7}(\mathrm{erg}) \\ & =0.239006(\mathrm{cal}) \end{aligned}$
Mass	$\begin{aligned} 1 \mathrm{~kg} & =10^{3} \mathrm{~g} \\ & =2.20462(\mathrm{lb}) \end{aligned}$		$\begin{aligned} & =5.12197 \times 10^{-3}(\mathrm{ft})^{3}(\mathrm{psia})=0.737562(\mathrm{ft})\left(\mathrm{lb}_{\mathrm{f}}\right) \\ & =9.47831 \times 10^{-4}(\mathrm{Btu})=2.77778 \times 10^{-7} \mathrm{kWhr} \end{aligned}$
Force	$\begin{aligned} 1 \mathrm{~N} & =1 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-2^{N}} \\ & =10^{5}(\text { dyne }) \\ & =0.224809\left(\mathrm{lb}_{f}\right) \end{aligned}$	Power	$\begin{aligned} 1 \mathrm{~kW} & =10^{3} \mathrm{~W}=10^{3} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-3}=10^{3} \mathrm{~J} \mathrm{~s}^{-1} \\ & =239.006(\mathrm{cal}) \mathrm{s}^{-1} \\ & =737.562(\mathrm{ft})(\mathrm{lb} \mathrm{f}) \mathrm{s}^{-1} \\ & =0.947831(\mathrm{Btu}) \mathrm{s}^{-1} \end{aligned}$
Pressure	$\begin{aligned} 1 \text { bar } & =10^{5} \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-2}=10^{5} \mathrm{Nm}^{-2} \\ & =10^{5} \mathrm{~Pa}=10^{2} \mathrm{kPa} \\ & =10^{6}(\text { dyne }) \mathrm{cm}^{-2} \\ & =0.986923 \text { (atm) } \\ & =14.5038 \text { (psia) } \\ & =750.061 \text { (torr) } \end{aligned}$		$=1.34102(\mathrm{hp})$ 2: Values of the Universal Gas Constant
Volume	$\begin{aligned} 1 \mathrm{~m}^{3} & =10^{6} \mathrm{~cm}^{3}=10^{3} \text { liters } \\ & =35.3147(\mathrm{ft})^{3} \\ & =264.172(\mathrm{gal}) \end{aligned}$	$\begin{aligned} & R=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}=8.314 \mathrm{~m}^{3} \mathrm{~Pa} \mathrm{~mol} \\ &-1 \\ & \mathrm{~K}^{-1} \\ &=83.14 \mathrm{~cm}^{3} \mathrm{bar} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}=8,314 \mathrm{~cm}^{3} \mathrm{kPa} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\ &=82.06 \mathrm{~cm}^{3}(\mathrm{~atm}) \mathrm{mol}^{-1} \mathrm{~K}^{-1}=62,356 \mathrm{~cm}^{3}(\text { torr }) \mathrm{mol}^{-1} \mathrm{~K}^{-1} \\ &=1.987(\mathrm{cal}) \mathrm{mol}^{-1} \mathrm{~K}^{-1}=1.986(\mathrm{Btu})\left(\mathrm{lb} \mathrm{~mole}^{-1}(\mathrm{R})^{-1}\right. \\ &=0.7302(\mathrm{ft})^{3}(\mathrm{~atm})(\mathrm{lb} \text { mol })^{-1}(\mathrm{R})^{-1}=10.73(\mathrm{ft})^{3}(\mathrm{psia})(\mathrm{lb} \mathrm{~mol})^{-1}(\mathrm{R})^{-1} \\ &=1,545(\mathrm{ft})(\mathrm{lb})(\mathrm{lb} \mathrm{~mol})^{-1}(\mathrm{R})^{-1} \end{aligned}$	
Density	$\begin{aligned} 1 \mathrm{~g} \mathrm{~cm}^{-3} & =10^{3} \mathrm{~kg} \mathrm{~m}^{-3} \\ & =62.4278\left(\mathrm{lb}_{\mathrm{m}}\right)(\mathrm{ft})^{-3} \end{aligned}$		

APPENDIX B

The constants in the table below are used to model the relationship between vapor pressure and temperature, through

$$
\log _{10} P^{n+1}=A-\frac{B}{T+C}
$$

where P^{ca} is expressed in mm Hg and T is expressed in degrees Celsius. Note that $1 \mathrm{~mm} \mathrm{Hg}=133.3 \mathrm{~Pa}=0.1333 \mathrm{kPa}$.

Name	Structure	A	8	C	TRange
Acetic acid	$\mathrm{CH}_{3} \mathrm{COOH}$	7.38782	1533.313	22.309	Liquid
Acetone	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$	7.11714	1210.595	229.664	Liquid
Acetonitrile	$\mathrm{CH}_{3} \mathrm{CN}$	7.11988	1314.4	230	Liquid
Acetylene	$\mathrm{C}_{2} \mathrm{H}_{2}$	9.1402	1232.6	280.9	-130 to -83
		7.0999	711.0	253.4	-82 to -72
Benzene	$\mathrm{C}_{3} \mathrm{H}_{3}$	9.1064	1885.9	244.2	-12 to 3
		6.90565	1211.033	220.790	8 to 103
Benzyl alcohol	$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{OH}$	7.19817	1632.593	172.790	122 to 205
Biphenyl	$\left\langle\mathrm{C}_{8} \mathrm{H}_{3}\right\}_{2}$	7.24541	1998.725	202.733	69 to 271
Bromochloromethane	$\mathrm{CH}_{2} \mathrm{BrCl}$	6.49606	942.267	192.587	16 to 68
1,3-Butadiene	$\mathrm{C}_{4} \mathrm{H}_{4}$	7.03555	998.106	245.233	-80 to -62
		6.84999	930.546	238.854	-58 to 15
n-butane	$\mathrm{C}_{4} \mathrm{H}_{12}$	6,80896	935.86	238.73	-77 to 19
1-butanol	$\mathrm{C}_{4} \mathrm{H}, \mathrm{OH}$	7.47680	1362.39	178.77	15 to 131
2-butanol	$\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{OH}$	7.47431	1314.19	186.55	25 to 120
1-Butene	$\mathrm{C}_{4} \mathrm{H}_{3}$	6.79290	908.80	238.54	-82 to 13
Chloroethane	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$	6.98647	1030.01	238.61	-56 to 12.2
Chloroform	CHCl_{3}	6.4934	929.44	196.03	-35 to 61
Chloromethane	$\mathrm{CH}_{3} \mathrm{Cl}$	7.09349	948.58	249.34	-75 to -5
Cyclohexane	$\mathrm{C}_{5} \mathrm{H}_{12}$	6.84130	1201.53	222.65	20 to 81
Diethyl ketone	$\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{O}$	6.85791	1216.3	204	

