

PROGRAM : NATIONAL DIPLOMA

CHEMICAL ENGINEERING

SUBJECT : THERMODYNAMICS III

CODE : **CIT3111**

DATE : SSA WINTER EXAMINATION 2019

DURATION : 3 HRS

WEIGHT : 40:60

TOTAL MARKS : 90

EXAMINER(S) : DR T FALAYI

MODERATOR : DR A MAMVURA

NUMBER OF PAGES : PAGES

REQUIREMENTS : Use of scientific (non-programmable) calculator is permitted

(only one per candidate); graph paper

HINTS AND INSTRUCTIONS TO CANDIDATE(S):

- Purpose of assessment is to determine not only if you can write down an answer, but also to assess whether you understand the concepts, principles and expressions involved. Set out solutions in a logical and concise manner with justification for the steps followed.
- ATTEMPT <u>ALL</u> QUESTIONS. Please answer each question to the best of your ability.
- Write your details (module name and code, ID number, student number etc.) on script(s).
- Number each question clearly; questions may be answered in any order.
- Make sure that you read each question carefully before attempting to answer the question.
- Show all steps (and units) in calculations; this is a 'closed book' test.
- Ensure your responses are legible, clear and include relevant units (where appropriate).
- Round off all answers tom 3 decimal places

Question One [Total: 11 Marks]

- a) Name 4 types of thermodynamic equilibrium
 b) Define Saturated vapour
 c) Convert 35 K to °C
 [1]
- d) A slab of gold is at the bottom of a 50 cm column of mercury. If the density of mercury is 13.534 g/cm³, g is 9.871 m/s² and the atmospheric pressure is 1 bar, calculate the pressure on the slab of gold in kPa. [4]

Question Two [Total: 19 Marks]

Steam is leaving a 4 L pressure cooker whose operating pressure is 250 kPa. It is observed that the amount of liquid in the cooker has decreased by 0.8 L in 20 min after the steady operating conditions are established, and the cross-sectional area of the exit opening is 8 mm². Determine:

- (a) the mass flow rate of the steam [7]
- (b) the exit velocity [7]
- (c) the flow energies of the steam per unit mass [5]

Note: Obtain water and steam properties from steam tables. Assume that flow is steady and initial start-up period is disregarded, KE and PE are negligible and Saturation conditions exist within the cooker at all times so that steam leaves the cooker as a saturated vapour at the cooker pressure

Question Three [Total: 21 Marks]

- a) Calculate the heat required to raise the temperature of 5 moles of ethane from 300°C to 600°C in a steady-flow process at a pressure sufficiently low that ethane may be considered an ideal gas. [10]
- b) N-Butane (C_4H_{10}) is burned completely with the stoichiometric amount of air during a steady-flow combustion process. If both the reactants and the products are maintained at 25°C and 1 atm and the water in the products exists in the liquid form, Calculate ΔH^o_{rxn} .

Question Four [Total: 17 Marks]

- a) Use Maxwell relation to determine the relationship for $\left(\frac{\partial S}{\partial V}\right)_T$ for a gas whose gas whose equation of state is $\left(P \frac{a}{V^2}\right)(V b) = RT$ [5]
- b) Calculate $\left(\frac{\partial S}{\partial V}\right)_T$ for steam at 300°C using ideal gas equation and appropriate

Maxwell relation $v = 0.03619m^3 / kg$. Use R=8.314 m³Pa/mol.K. [6]

[6]

c) For the same steam in (b) determine $\left(\frac{\partial S}{\partial V}\right)_T$ using Redlich-Kwong equation of state and an appropriate Maxwell relation $v = 0.03619m^3 / kg$ Use R=8.314 m³Pa/mol.K. $P = \frac{RT}{V - h} \left(\frac{a}{V(V + h)T^{1/2}} \right)$ Redlich-Kwong equation of state $a = 1.42 \times 10^4 Pa \left(\frac{m^3}{kmol}\right)^2 K^{\frac{1}{2}}$ $b = 0.0211 \frac{m^3}{kmol}$

Question 5 [22 marks]

- a) Estimate the fugacity isobutene at 20 bar and 87°C given that the compressibility factor is given as $Z = 1 + \frac{BP}{PT}$ where B -4.28×10⁻⁴ m³/mol. Give your answer in kPa. [3]
- b) Estimate the fugacity of a gaseous mixture consisting of 30% component 1 and 70% component 2 by mole, given that at 100°C and 50 bar, the fugacity coefficients of components 1 and 2 are 0.7 and 0.85 respectively. Give your answer in bars
- c) For SO₂ at 430.8 K and 394.45 bar, determine good estimate of fugacity using the using Lee/Kesler correlation charts. [13]

END [Total: 90 Marks]

USEFUL EQUATIONS AND FORMULAE

$$PV = nRT; \quad \frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}; \quad v = \frac{V^t}{m}; \quad \dot{m} = uA\rho; \quad \dot{n} = \frac{uA}{vM}; \rho = v^{-1}; \quad \dot{V} = \frac{V^t}{t};$$

$$t(^{\circ}C) = T(K) - 273.15; \quad t(^{\circ}F) = T(R) - 459.67; \quad t(^{\circ}F) = 1.8t(^{\circ}C) + 32;$$

$$P_g = \frac{F}{A} = \frac{mg}{A} = \frac{\rho Vg}{A} = \frac{Ah\rho g}{A}; \quad P_{abs} = P_g(or \, \rho gh) + P_{atm}$$

$$\underline{Interpolation:} \quad M = \left(\frac{X_2 - X}{X_2 - X_1}\right) M_1 + \left(\frac{X - X_1}{X_2 - X_1}\right) M_2 \quad OR \quad M = \frac{M_1(X_2 - X) + M_2(X - X_1)}{X_2 - X_1}$$

Double Interpolation:

$$\begin{array}{|c|c|c|c|}\hline & X_1 & X & X_2\\\hline Y_1 & M_{1,1} & M_{1,2}\\\hline Y & M = ?\\\hline Y_2 & M_{2,1} & M_{2,2} \end{array} \end{array} M = \begin{bmatrix} \left(\frac{X_2 - X}{X_2 - X_1}\right) M_{1,1} + \left(\frac{X - X_1}{X_2 - X_1}\right) M_{1,2} \end{bmatrix} \frac{Y_2 - Y}{Y_2 - Y_1} + \left[\left(\frac{X_2 - X}{X_2 - X_1}\right) M_{2,1} + \left(\frac{X - X_1}{X_2 - X_1}\right) M_{2,2} \right] \frac{Y - Y_1}{Y_2 - Y_1}$$

$$\Delta E_{univ} = \Delta E_{syst} + \Delta E_{surr} = 0; \qquad \eta = \frac{W_{irreversible}}{W_{reversible}}; \qquad \frac{dm_{cv}}{dt} = \Delta m = \dot{m}_{out} - \dot{m}_{in}$$

$$\underline{Energy \ balance \ for \ open \ systems:} \qquad \frac{d(mU)_{cv}}{dt} = -\dot{m}\Delta \left[U + \frac{1}{2}u^2 + gh \right] + \dot{Q} + \dot{W}$$

Energy balance for steady-state flow processes:

$$\Delta \dot{m} \left(H + \frac{1}{2} u^2 + g h \right) = \dot{Q} + \dot{W}_S$$

Single Phase:
$$\ln \frac{V_2}{V_1} = \beta (T_2 - T_1) - \kappa (P_2 - P_1)$$

Mechanically reversible closed system processes:

Constant V:
$$Q = n\Delta U = n \int_{T_1}^{T_2} C_v dT = nC_v \Delta T$$

Constant P:
$$Q = n\Delta H = n \int_{T_*}^{T_2} C_p dT = nC_p \Delta T;$$
 $W = -R(T_2 - T_1)$

Constant T:
$$Q = -W = RT_1 \ln \frac{V_2}{V_1} = -RT_1 \ln \frac{P_2}{P_1} = P_1 V_1 \ln \frac{V_2}{V_1} = -P_1 V_1 \ln \frac{P_2}{P_1}$$

Adiabatic:
$$\frac{T_2}{T_1} = \left(\frac{V_1}{V_2}\right)^{R/C_V}; \qquad \frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)^{R/C_P}; \qquad \frac{P_2}{P_1} = \left(\frac{V_1}{V_2}\right)^{C_P/C_V}; \qquad \gamma = \frac{C_P}{C_V};$$

Adiabatic:
$$W = \Delta U = C_V \Delta T = \frac{R\Delta T}{\gamma - 1} = \frac{R(T_2 - T_1)}{\gamma - 1} = \frac{P_2 V_2 - P_1 V_1}{\gamma - 1} = \frac{P_1 V_1}{\gamma - 1} \left[\left(\frac{P_2}{P_1} \right)^{\gamma - 1/\gamma} - 1 \right] = \frac{RT_1}{\gamma - 1} \left[\left(\frac{P_2}{P_1} \right)^{\gamma - 1/\gamma} - 1 \right]$$

For Carnot Cycle
$$\eta = 1 - \frac{Q_C}{Q_H} = 1 - \frac{T_c}{T_H} = \frac{W_{net}}{Q_H}$$

<u>Virial equation</u> truncated to 2 terms: $Z = \frac{PV}{RT} = 1 + \frac{BP}{RT}$; truncated to 3 terms: $Z = 1 + \frac{B(T)}{V} + \frac{C(T)}{V^2}$;

<u>Lee/ Kesler correlation</u>: $Z = Z^o + \omega Z^1$;

Generalized Pitzer correlation:
$$Z = 1 + (B^0 + \omega B^1) \frac{P_r}{T_r}$$
 $(B^0 = 0.083 - \frac{0.422}{T_r^{1.6}})$; $B^1 = 0.139 - \frac{0.172}{T_r^{4.2}}$

$$\begin{split} \text{IG:} Q &= n \Delta H = n \int_{T_0}^{T_1} \frac{c p^{ig}}{R} dT = n \left[A T_o(\tau - 1) + \frac{B}{2} T_o^2(\tau^2 - 1) + \frac{C}{3} T_o^3(\tau^3 - 1) + \frac{D}{T_o} \left(\frac{\tau - 1}{\tau} \right) \right] = n \frac{\langle C_P \rangle_H}{R} (T_1 - T_0); \\ \text{where, } \tau &= \frac{T}{T_0} \end{split}$$

$$\langle C_P \rangle_H = R \left[A + \frac{B}{2} T_o(\tau + 1) + \frac{C}{3} T_o^2(\tau^2 + \tau + 1) + \frac{D}{\tau T_o^2} \right]$$

Clapeyron equation:
$$\Delta H = T \Delta V \frac{dP^{sat}}{dT}$$

<u>General entropy change</u>: $\Delta S = C_p \ln \frac{T_2}{T_1} - \ln \frac{P_2}{P_1}$

Entropy change for IG:
$$\frac{\Delta S}{R} = \frac{\left\langle c_p^{ig} \right\rangle_S}{R} \ln \frac{T}{T_o} - \ln \frac{P}{P_o}; \quad \frac{\left\langle c_p^{ig} \right\rangle_S}{R} = A + \left[BT_o + \left(CT_o^2 + \frac{D}{\tau^2 T_o^2} \right) \left(\frac{\tau + 1}{\tau} \right) \right] \left(\frac{\tau - 1}{\ln \tau} \right)$$

For residual properties:
$$V^R = V - V^{ig}$$
; $H^R = H - H^{ig}$; $G^R = RT \ln \phi$

$$S^{R} = S - \left(S^{ig} + \frac{R}{Mr} \ln \frac{P_{2}}{P_{1}}\right); \qquad \frac{H^{R}}{RT_{c}} = \left(\frac{H^{R}}{RT_{c}}\right)^{0} + \omega \left(\frac{H^{R}}{RT_{c}}\right)^{1} \qquad ; \qquad \frac{S^{R}}{R} = \left(\frac{S^{R}}{R}\right)^{0} + \omega \left(\frac{S^{R}}{R}\right)^{1}$$

$$\frac{H^R}{RT_c} = P_r \left[\left(0.083 - \frac{1.097}{T_r^{1.6}} \right) + \omega \left(0.139 - \frac{0.894}{T_r^{4.2}} \right) \right] \qquad ; \qquad \frac{S^R}{R} = -P_r \left[\frac{0.675}{T_r^{2.6}} + \omega \left(\frac{0.722}{T_r^{5.2}} \right) \right];$$

$$Z = 1 + \beta - q\beta \frac{(Z - \beta)}{(Z + \epsilon\beta)(Z + \sigma\beta)}$$

Fugacity and fugacity coefficient: $\phi = (\phi^0)(\phi^1)^{\omega}$; $f = \phi P$; $\ln \phi = (B^0 + \omega B^1)\frac{P_r}{T_r}$; $\ln \phi = \sum_i X_i \ln \phi_i$

$$\ln \frac{f}{P} = \frac{BP}{RT}$$

Raoult's law: $y_i P = x_i P_i^{sat}$ where $P = \sum_i x_i P_i^{sat}$ or $P = \frac{1}{\sum_i y_i / P_i^{sat}}$

Modified Raoult's law: $y_i P = x_i \gamma_i P_i^{sat}$ where $P = \sum_i x_i \gamma_i P_i^{sat}$ or $P = \frac{1}{\sum_i y_i / \gamma_i P_i^{sat}}$

Maxwell Relations

•
$$\left(\frac{\partial T}{\partial V}\right)_S = -\left(\frac{\partial P}{\partial S}\right)_V$$

•
$$\left(\frac{\partial T}{\partial P}\right)_S = \left(\frac{\partial V}{\partial S}\right)_P$$

•
$$\left(\frac{\partial P}{\partial T}\right)_V = \left(\frac{\partial S}{\partial V}\right)_T$$

•
$$\left(\frac{\partial V}{\partial T}\right)_P = -\left(\frac{\partial S}{\partial P}\right)_T$$

	Table A.1: Conversion Factors						
Quantity	Conversion						
Length	1 m = 100 cm = 3.28084(ft) = 39.3701(in)						
Mass	$1 \text{ kg} = 10^3 \text{ g}$ = 2.20462(lb _m)						
Force	$1 \text{ N} = 1 \text{ kg m s}^{-2}$ = $10^5 (\text{dyne})$ = $0.224809(\text{lbf})$						
Pressure	1 bar = 10^5 kg m ⁻¹ s ⁻² = 10^5 N m ⁻² = 10^5 Pa = 10^2 kPa = 10^6 (dyne) cm ⁻² = 0.986923 (atm) = 14.5038 (psia) = 750.061 (torr)						
Volume	$1 \text{ m}^3 = 10^6 \text{ cm}^3 = 10^3 \text{ liters}$ = 35.3147(ft) ³ = 264.172(gal)						
Density	$1 \text{ g cm}^{-3} = 10^3 \text{ kg m}^{-3}$ = 62.4278(lb _m)(ft) ⁻³						

Energy	1 J = 1 kg m2 s-2 = 1 N m = 1 m ³ Pa = 10 ⁻⁵ m ³ bar = 10 cm ³ bar = 9.86923 cm ³ (atm) = 10 ⁷ (dyne) cm = 10 ⁷ (erg) = 0.239006(cal) = 5.12197 × 10 ⁻³ (ft) ³ (psia) = 0.737562(ft)(lb _f)
	= 9.47831×10^{-4} (Btu) = 2.77778×10^{-7} kWhr
Power	$1 \text{ kW} = 10^3 \text{ W} = 10^3 \text{ kg m}^2 \text{ s}^{-3} = 10^3 \text{ J s}^{-1}$
	= 239.006(cal) s ⁻¹
	$= 737.562(ft)(lb_f) s^{-1}$
	$= 0.947831(Btu) s^{-1}$
	= 1.34102(hp)
	= 0.947831(Btu) s ⁻¹ = 1.34102(hp)
	e A.2: Values of the Universal Gas Constant
= 83.14 cm = 82.06 cm	$\text{mol}^{-1} \text{ K}^{-1} = 8.314 \text{ m}^3 \text{ Pa mol}^{-1} \text{ K}^{-1}$ $\text{mol}^{-1} \text{ K}^{-1} = 8.314 \text{ cm}^3 \text{ kPa mol}^{-1} \text{ K}^{-1}$ $\text{Parameter}^3 \text{ (atm) mol}^{-1} \text{ K}^{-1} = 62,356 \text{ cm}^3 \text{ (torr) mol}^{-1} \text{ K}^{-1}$
= 1.98/(ca)	$ mol^{-1} K^{-1} = 1.986(Btu)(lb mole)^{-1}(R)^{-1}$

= $0.7302(\text{ft})^3(\text{atm})(\text{lb mol})^{-1}(R)^{-1} = 10.73(\text{ft})^3(\text{psia})(\text{lb mol})^{-1}(R)^{-1}$

 $= 1,545(ft)(lb_f)(lb mol)^{-1}(R)^{-1}$

632	_			APPE	ENDIX B	B. Properties of Pure	e Species
	Table	B .I P	ropertie	es of Pu	re Spec	ies	
	Molar mass	ω	T _c /K	$P_{\rm c}$ /bar	Z_c	V_c cm ³ mol ⁻¹ or 10^{-3} m ³ kmol ⁻¹	T_n/\mathbf{K}
Methane	16.043	0.012	190.6	45.99	0.286	98.6	111.4
Ethane	30.070	0.100	305.3	48.72	0.279	145.5	184.6
Propane	44.097	0.152	369.8	42.48	0.276	200.0	231.1
n-Butane	58.123	0.200	425.1	37.96	0.274	255.	272.7
n-Pentane	72.150	0.252	469.7	33.70	0.270	313.	309.2
n-Hexane	86.177	0.301	507.6	30.25	0.266	371.	341.9
n-Heptane	100.204	0.350	540.2	27.40	0.261	428.	371.6
n-Octane	114.231	0.400	568.7	24.90	0.256	486.	398.8
n-Nonane	128.258	0.444	594.6	22.90	0.252	544.	424.0
n-Decane	142.285	0.492	617.7	21.10	0.247	600.	447.3
Isobutane	58.123	0.181	408.1	36.48	0.282	262.7	261.4
Isooctane	114.231	0.302	544.0	25.68	0.266	468.	372.4
Cyclopentane	70.134	0.196	511.8	45.02	0.273	258.	322.4
Cyclohexane	84.161	0.210	553.6	40.73	0.273	308.	353.9
Methylcyclopentane	84.161	0.230	532.8	37.85	0.273	319.	345.0
Methylcyclohexane	98.188	0.235	572.2	34.71	0.272	368.	374.1
Ethylene	28.054	0.233	282.3	50.40	0.281	131.	169.4
Propylene	42.081	0.140	365.6	46.65			
1-Butene	56.108	0.191	420.0	40.63	0.289 0.277	188.4 239.3	225.5 266.9
cis-2-Butene	56.108	0.191	435.6	42.43			
trans-2-Butene	56.108		428.6	41.00	0.273	233.8	276.9
1-Hexene		0.218	504.0	31.40	0.275	237.7	274.0
	84.161				0.265	354.	336.3
Isobutylene	56.108	0.194	417.9	40.00	0.275	238.9	266.3
1,3-Butadiene	54.092	0.190	425.2	42.77	0.267	220.4	268.7
Cyclohexene	82.145	0.212	560.4	43.50	0.272	291.	356.1
Acetylene	26.038	0.187	308.3	61.39	0.271	113.	189.4
Benzene	78.114	0.210	562.2	48.98	0.271	259.	353.2
Toluene	92.141	0.262	591.8	41.06	0.264	316.	383.8
Ethylbenzene	106.167	0.303	617.2	36.06	0.263	374.	409.4
Cumene	120.194	0.326	631.1	32.09	0.261	427.	425.6
o-Xylene	106.167	0.310	630.3	37.34	0.263	369.	417.6
m-Xylene	106.167	0.326	617.1	35.36	0.259	376.	412.3
p-Xylene	106.167	0.322	616.2	35.11	0.260	379.	411.5
Styrene	104.152	0.297	636.0	38.40	0.256	352.	418.3
Naphthalene	128.174	0.302	748.4	40.51	0.269	413.	
Biphenyl	154.211	0.365	789.3	38.50	0.295	502.	528.2
Formaldehyde	30.026	0.282	408.0	65.90	0.223	115.	254.1
Acetaldehyde	44.053	0.291	466.0	55.50	0.221	154.	294.0
Methyl acetate	74.079	0.331	506.6	47.50	0.257	228.	330.1
Ethyl acetate	88.106	0.366	523.3	38.80	0.255	286.	350.2
Acetone	58.080	0.307	508.2	47.01	0.233	209.	329.4
Methyl ethyl ketone	72.107	0.323	535.5	41.50	0.249	267.	352.8
Diethyl ether	74.123	0.281	466.7	36.40	0.263	280.	307.6
Methyl t-butyl ether	88.150	0.266	497.1	34.30	0.273	329.	328.4
Methanol	32.042	0.564	512.6	80.97	0.224	118.	337.9

		Table	B.I (C	ontinue	d)		
	Molar mass	ω	T _c /K	P _c /bar	Z_c	V_c cm ³ mol ⁻¹ or 10^{-3} m ³ kmol ⁻¹	T _u /K
Ethanol	46.069	0.645	513.9	61.48	0.240	167.	351.4
1-Propanol	60.096	0.622	536.8	51.75	0.254	219.	370.4
I-Butanol	74.123	0.594	563.1	44.23	0.260	275.	390.8
L-Hexanol	102.177	0.579	611.4	35.10	0.263	381.	430.6
2-Propanol	60.096	0.668	508.3	47.62	0.248	220.	355.4
Phenol	94.113	0.444	694.3	61.30	0.243	229.	455.0
Ethylene glycol	62.068	0.487	719.7	77.00	0.246	191.0	470.5
Acetic acid	60.053	0.467	592.0	57.86	0.211	179.7	391.
n-Butyric acid	88.106	0.681	615.7	40.64	0.232	291.7	436.4
Benzoic acid	122.123	0.603	751.0	44.70	0.246	344.	522.4
Acetonitrile	41.053	0.338	545.5	48.30	0.184	173.	354.8
Methylamine	31.057	0.281	430.1	74.60	0.321	154.	266.
Ethylamine	45.084	0.285	456.2	56.20	0.307	207.	289.
Nitromethane	61.040	0.348	588.2	63.10	0.223	173.	374
Carbon tetrachloride	153.822	0.193	556.4	45.60	0.272	276.	349.
Chloroform	119.377	0.222	536.4	54.72	0.293	239.	334.
Dichloromethane	84.932	0.199	510.0	60.80	0.265	185.	312.
Methyl chloride	50.488	0.153	416.3	66.80	0.276	143.	249.
Ethyl chloride	64.514	0.190	460.4	52.70	0.275	200.	285.
Chlorobenzene	112.558	0.250	632.4	45.20	0.265	308.	404.
Tetrafluoroethane	102.030	0.327	374.2	40.60	0.258	198.0	247.
Argon	39.948	0.000	150.9	48.98	0.291	74.6	87.
Krypton	83.800	0.000	209.4	55.02	0.288	91.2	119.
Xenon	131.30	0.000	289.7	58.40	0.286	118.0	165.
Helium 4	4.003	-0.390	5.2	2.28	0.302	57.3	4.
Hydrogen	2.016	-0.216	33.19	13.13	0.305	64.1	20.
Oxygen	31.999	0.022	154.6	50.43	0.288	73.4	
Nitrogen	28.014	0.022	126.2	34.00	0.289	89.2	90.
Air [†]	28.851	0.035	132.2	37.45	0.289	84.8	77.
Chlorine	70.905	0.069	417.2	77.10	0.265	124.	220
Carbon monoxide	28.010	0.048	132.9	34.99	0.299	93.4	239.
Carbon dioxide	44.010	0.224	304.2	73.83	0.274	94.0	81.
Carbon disulfide	76.143	0.111	552.0	79.00	0.274	160.	210
Hydrogen sulfide	34.082	0.094	373.5			98.5	319.
Sulfur dioxide		0.094	430.8	89.63	0.284		212.
Sulfur trioxide	64.065 80.064	0.424	490.9	78.84	0.269	122. 127.	263.
Nitric oxide (NO)	30.006	0.583	180.2	82.10 64.80	0.255	58.0	317.
							121.
Nitrous oxide(N2O)	44.013 36.461	0.141	309.6 324.7	72.45	0.274	97.4	184.
Hydrogen chloride		0.132		83.10	0.249	81.	188.
Hydrogen cyanide Water	27.026		456.7 647.1	53.90	0.197	139. 55.0	298.
Water Ammonia	18.015	0.345	647.1	220.55	0.229	55.9 72.5	373.
Nitric acid	17.031 63.013	0.253	405.7 520.0	112.80 68.90	0.242	72.5	239.
Sulfuric acid	98.080		520.0 924.0		0.231	145.	356.
Junuic acid	20,000	171	924.0	64.00	0.147	177.	610.

		- A	PPENDI.	A D. The	DEE/ NEST	er dener	444,000-001	7 63443071
		-	Table	E.I Valu	ies of Z^0			
$P_r =$	0.0100	0.0500	0.1000	0.2000	0.4000	0.6000	0.8000	1.0000
T_r								
0.30	0.0029	0.0145	0.0290	0.0579	0.1158	0.1737	0.2315	0.2892
0.35	0.0026	0.0130	0.0261	0.0522	0.1043	0.1564	0.2084	0.2604
0.40	0.0024	0.0119	0.0239	0.0477	0.0953	0.1429	0.1904	0.2379
0.45	0.0022	0.0110	0.0221	0.0442	0.0882	0.1322	0.1762	0.2200
0.50	0.0021	0.0103	0.0207	0.0413	0.0825	0.1236	0.1647	0.2056
0.55	0.9804	0.0098	0.0195	0.0390	0.0778	0.1166	0.1553	0.1939
0.60	0.9849	0.0093	0.0186	0.0371	0.0741	0.1109	0.1476	0.1842
0.65	0.9881	0.9377	0.0178	0.0356	0.0710	0.1063	0.1415	0.1765
0.70	0.9904	0.9504	0.8958	0.0344	0.0687	0.1027	0.1366	0.1703
0.75	0.9922	0.9598	0.9165	0.0336	0.0670	0.1001	0.1330	0.1656
0.80	0.9935	0.9669	0.9319	0.8539	0.0661	0.0985	0.1307	0.1626
0.85	0.9946	0.9725	0.9436	0.8810	0.0661	0.0983	0.1301	0.1614
0.90	0.9954	0.9768	0.9528	0.9015	0.7800	0.1006	0.1321	0.1630
0.93	0.9959	0.9790	0.9573	0.9115	0.8059	0.6635	0.1359	0.1664
0.95	0.9961	0.9803	0.9600	0.9174	0.8206	0.6967	0.1410	0.1705
0.97	0.9963	0.9815	0.9625	0.9227	0.8338	0.7240	0.5580	0.1779
0.98	0.9965	0.9821	0.9637	0.9253	0.8398	0.7360	0.5887	0.1844
0.99	0.9966	0.9826	0.9648	0.9277	0.8455	0.7471	0.6138	0.1959
1.00	0.9967	0.9832	0.9659	0.9300	0.8509	0.7574	0.6355	0.2901
1.01	0.9968	0.9837	0.9669	0.9322	0.8561	0.7671	0.6542	0.4648
1.02	0.9969	0.9842	0.9679	0.9343	0.8610	0.7761	0.6710	0.5146
1.05	0.9971	0.9855	0.9707	0.9401	0.8743	0.8002	0.7130	0.6026
1.10	0.9975	0.9874	0.9747	0.9485	0.8930	0.8323	0.7649	0.6880
1.15	0.9978	0.9891	0.9780	0.9554	0.9081	0.8576	0.8032	0.7443
1.20	0.9981	0.9904	0.9808	0.9611	0.9205	0.8779	0.8330	0.7858
1.30	0.9985	0.9926	0.9852	0.9702	0.9396	0.9083	0.8764	0.8438
1.40	0.9988	0.9942	0.9884	0.9768	0.9534	0.9298	0.9062	0.8827
1.50	0.9991	0.9954	0.9909	0.9818	0.9636	0.9456	0.9278	0.9103
1.60	0.9993	0.9964	0.9928	0.9856	0.9714	0.9575	0.9439	0.9308
1.70	0.9994	0.9971	0.9943	0.9886	0.9775	0.9667	0.9563	0.9463
1.80	0.9995	0.9977	0.9955	0.9910	0.9823	0.9739	0.9659	0.9583
1.90	0.9996	0.9982	0.9964	0.9929	0.9861	0.9796	0.9735	0.9678
2.00	0.9997	0.9986	0.9972	0.9944	0.9892	0.9842	0.9796	0.9754
2.20	0.9998	0.9992	0.9983	0.9967	0.9937	0.9910	0.9886	0.9865
2.40	0.9999	0.9996	0.9991	0.9983	0.9969	0.9957	0.9948	0.9941
2.60	1.0000	0.9998	0.9997	0.9994	0.9991	0.9990	0.9990	0.9993
2.80	1.0000	1.0000	1.0001	1.0002	1.0007	1.0013	1.0021	1.0031
3.00	1.0000	1.0002	1.0004	1.0008	1.0018	1.0030	1.0043	1.0057
3.50	1.0001	1.0004	1.0008	1.0017	1.0035	1.0055	1.0075	1.0097
4.00	1.0001	1.0005	1.0010	1.0021	1.0043	1.0066	1.0090	1.0115

			2408		- All			
			Table	E.2 Valu	ues of \mathbb{Z}^1		De la lace	
$P_r =$	0.0100	0.0500	0.1000	0.2000	0.4000	0.6000	0.8000	1.0000
T_r								
0.30	-0.0008	-0.0040	-0.0081	-0.0161	-0.0323	-0.0484	-0.0645	-0.0806
0.35	-0.0009	-0.0046	-0.0093	-0.0185	-0.0370	-0.0554	-0.0738	-0.0921
0.40	-0.0010	-0.0048	-0.0095	-0.0190	-0.0380	-0.0570	-0.0758	-0.0946
0.45	-0.0009	-0.0047	-0.0094	-0.0187	-0.0374	-0.0560	-0.0745	-0.0929
0.50	-0.0009	-0.0045	-0.0090	-0.0181	-0.0360	-0.0539	-0.0716	-0.0893
0.55	-0.0314	-0.0043	-0.0086	-0.0172	-0.0343	-0.0513	-0.0682	-0.0849
0.60	-0.0205	-0.0041	-0.0082	-0.0164	-0.0326	-0.0487	-0.0646	-0.0803
0.65	-0.0137	-0.0772	-0.0078	-0.0156	-0.0309	-0.0461	-0.0611	-0.0759
0.70	-0.0093	-0.0507	-0.1161	-0.0148	-0.0294	-0.0438	-0.0579	-0.0718
0.75	-0.0064	-0.0339	-0.0744	-0.0143	-0.0282	-0.0417	-0.0550	-0.0681
0.80	-0.0044	-0.0228	-0.0487	-0.1160	-0.0272	-0.0401	-0.0526	-0.0648
0.85	-0.0029	-0.0152	-0.0319	-0.0715	-0.0268	-0.0391	-0.0509	-0.0622
0.90	-0.0019	-0.0099	-0.0205	-0.0442	-0.1118	-0.0396	-0.0503	-0.0604
0.93	-0.0015	-0.0075	-0.0154	-0.0326	-0.0763	-0.1662	-0.0514	-0.0602
0.95	-0.0012	-0.0062	-0.0126	-0.0262	-0.0589	-0.1110	-0.0540	-0.0607
0.97	-0.0010	-0.0050	-0.0101	-0.0208	-0.0450	-0.0770	-0.1647	-0.0623
0.98	-0.0009	-0.0044	-0.0090	-0.0184	-0.0390	-0.0641	-0.1100	-0.0641
0.99	-0.0008	-0.0039	-0.0079	-0.0161	-0.0335	-0.0531	-0.0796	-0.0680
1.00	-0.0007	-0.0034	-0.0069	-0.0140	-0.0285	-0.0435	-0.0588	-0.0879
1.01	-0.0006	-0.0030	-0.0060	-0.0120	-0.0240	-0.0351	-0.0429	-0.0223
1.02	-0.0005	-0.0026	-0.0051	-0.0102	-0.0198	-0.0277	-0.0303	-0.0062
1.05	-0.0003	-0.0015	-0.0029	-0.0054	-0.0092	-0.0097	-0.0032	0.0220
1.10	0.0000	0.0000	0.0001	0.0007	0.0038	0.0106	0.0236	0.0476
1.15	0.0002	0.0011	0.0023	0.0052	0.0127	0.0237	0.0396	0.0625
1.20	0.0004	0.0019	0.0039	0.0084	0.0190	0.0326	0.0499	0.0719
1.30	0.0006	0.0030	0.0061	0.0125	0.0267	0.0429	0.0612	0.0819
1.40	0.0007	0.0036	0.0072	0.0147	0.0306	0.0477	0.0661	0.0857
1.50	0.0008	0.0039	0.0078	0.0158	0.0323	0.0497	0.0677	0.0864
1.60	0.0008	0.0040	0.0080	0.0162	0.0330	0.0501	0.0677	0.0855
1.70	0.0008	0.0040	0.0081	0.0163	0.0329	0.0497	0.0667	0.0838
1.80	0.0008	0.0040	0.0081	0.0162	0.0325	0.0488	0.0652	0.0814
1.90	0.0008	0.0040	0.0079	0.0159	0.0318	0.0477	0.0635	0.0792
2.00	0.0008	0.0039	0.0078	0.0155	0.0310	0.0464	0.0617	0.0767
2.20	0.0007	0.0037	0.0074	0.0147	0.0293	0.0437	0.0579	0.0719
2.40	0.0007	0.0035	0.0070	0.0139	0.0276	0.0411	0.0544	0.0675
2.60	0.0007	0.0033	0.0066	0.0131	0.0260	0.0387	0.0512	0.0634
2.80	0.0006	0.0031	0.0062	0.0124	0.0245	0.0365	0.0483	0.0598
3.00	0.0006	0.0029	0.0059	0.0117	0.0232	0.0345	0.0456	0.0565
3.50	0.0005	0.0026	0.0052	0.0103	0.0204	0.0303	0.0401	0.0497
4.00	0.0005	0.0023	0.0046	0.0091	0.0182	0.0270	0.0357	0.0443

3.50

4.00

1.0093

1.0116

1.0116

1.0139

1.0139

1.0162

1.0186

1.0233

1.0304

1.0375

1.0593

1.0666

1.0914

1.0990

			A	PPENDL	X E. The	Lee/Kesl	er Genero	alized-cor	relation		
	Table E.15 Values of ϕ^0										
P_r :	= 1	.0000	1.2000	1.5000	2.0000	3.0000	5.0000	7.0000	10.000		
T_{r}											
0.3	0 0	.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
0.3		.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
0.4	0 0	.0003	0.0003	0.0003	0.0002	0.0002	0.0002	0.0002	0.0003		
0.4	5 0	.0016	0.0014	0.0012	0.0010	0.0008	0.0008	0.0009	0.0012		
0.5	0 0	.0055	0.0048	0.0041	0.0034	0.0028	0.0025	0.0027	0.0034		
0.5	5 0	.0146	0.0127	0.0107	0.0089	0.0072	0.0063	0.0066	0.0080		
0.6		.0321	0.0277	0.0234	0.0193	0.0154	0.0132	0.0135	0.0160		
0.6		.0611	0.0527	0.0445	0.0364	0.0289	0.0244	0.0245	0.0282		
0.7		.1045	0.0902	0.0759	0.0619	0.0488	0.0406	0.0402	0.0453		
0.7	5 0	1641	0.1413	0.1188	0.0966	0.0757	0.0625	0.0610	0.0673		
0.8	0 0	2404	0.2065	0.1738	0.1409	0.1102	0.0899	0.0867	0.0942		
0.8		3319	0.2858	0.2399	0.1945	0.1517	0.1227	0.1175	0.1256		
0.9		.4375	0.3767	0.3162	0.2564	0.1995	0.1607	0.1524	0.1611		
0.9		5058	0.4355	0.3656	0.2972	0.2307	0.1854	0.1754	0.1841		
0.9		.5521	0.4764	0.3999	0.3251	0.2523	0.2028	0.1910	0.2000		
0.9		.5984	0.5164	0.4345	0.3532	0.2748	0.2203	0.2075	0.2163		
0.9		.6223	0.5370	0.4529	0.3681	0.2864	0.2296	0.2158	0.2244		
0.9		.6442	0.5572	0.4699	0.3828	0.2978	0.2388	0.2244	0.2328		
1.0		.6668	0.5781	0.4875	0.3972	0.3097	0.2483	0.2328	0.2415		
1.0		.6792	0.5970	0.5047	0.4121	0.3214	0.2576	0.2415	0.2500		
1.0		.6902	0.6166	0.5224	0.4266	0.3334	0.2673	0.2506	0.2582		
1.0		7194	0.6607	0.5728	0.4710	0.3690	0.2958	0.2773	0.2844		
1.1		7586	0.7112	0.6412	0.5408	0.4285	0.3451	0.3228	0.3296		
1.1		.7907 .8166	0.7499 0.7834	0.6918 0.7328	0.6026	0.4875	0.3954 0.4446	0.3690	0.3750		
1.3		.8590	0.8318	0.7943	0.7345	0.6383	0.5383	0.5058	0.5093		
1.4		.8892	0.8690	0.8395	0.7925	0.7145	0.6237	0.5902	0.5943		
1.5		9141	0.8974	0.8730	0.8375	0.7745	0.6966	0.6668	0.6714		
1.6		.9311	0.9183	0.8995	0.8710	0.8222	0.7586	0.7328	0.7430		
1.7	0 0.	.9462	0.9354	0.9204	0.8995	0.8610	0.8091	0.7907	0.8054		
1.8	0 0.	9572	0.9484	0.9376	0.9204	0.8913	0.8531	0.8414	0.8590		
1.9	0.	9661	0.9594	0.9506	0.9376	0.9162	0.8872	0.8831	0.9057		
2.0	0 0.	9727	0.9683	0.9616	0.9528	0.9354	0.9183	0.9183	0.9462		
2.2	0 0	.9840	0.9817	0.9795	0.9727	0.9661	0.9616	0.9727	1.0093		
2.4	0 0	.9931	0.9908	0.9908	0.9886	0.9863	0.9931	1.0116	1.0568		
2.6	0 0	9977	0.9977	0.9977	0.9977	1.0023	1.0162	1.0399	1.0889		
2.8		.0023	1.0023	1.0046	1.0069	1.0116	1.0328	1.0593	1.1117		
3.0		.0046	1.0069	1.0069	1.0116	1.0209	1.0423	1.0740	1.1298		
		0002	1.0116	1.0120	1.0196	1.0204	1.0502	1.0014	1 1500		

1.1508

1.1588

			Table E	E.16 Val	ues of φ	1		
P. =	1.0000	1.2000	1.5000	2.0000	3.0000	5.0000	7.0000	10.000
T_r								
0.30	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.35	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.40	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.45	0.0002	0.0002	0.0002	0.0002	0.0001	0.0001	0.0001	0.0001
0.50	0.0013	0.0013	0.0013	0.0012	0.0011	0.0009	8000.0	0.0006
0.55	0.0063	0.0062	0.0061	0.0058	0.0053	0.0045	0.0039	0.0031
0.60	0.0210	0.0207	0.0202	0.0194	0.0179	0.0154	0.0133	0.0108
0.65	0.0536	0.0527	0.0516	0.0497	0.0461	0.0401	0.0350	0.0289
0.70	0.1117	0.1102	0.1079	0.1040	0.0970	0.0851	0.0752	0.0629
0.75	0.1995	0.1972	0.1932	0.1871	0.1754	0.1552	0.1387	0.1178
0.80	0.3170	0.3133	0.3076	0.2978	0.2812	0.2512	0.2265	0.1954
0.85	0.4592	0.4539	0.4457	0.4325	0.4093	0.3698	0.3365	0.2951
0.90	0.6166	0.6095	0.5998	0.5834	0.5546	0.5058	0.4645	0.4130
0.93	0.7145	0.7063	0.6950	0.6761	0.6457	0.5916	0.5470	0.4898
0.95	0.7798	0.7691	0.7568	0.7379	0.7063	0.6501	0.6026	0.5432
0.97	0.8414	0.8318	0.8185	0.7998	0.7656	0.7096	0.6607	0.5984
0.98	0.8730	0.8630	0.8492	0.8298	0.7962	0.7379	0.6887	0.6266
0.99	0.9036	0.8913	0.8790	0.8590	0.8241	0.7674	0.7178	0.6546
1.00	0.9311	0.9204	0.9078	0.8872	0.8531	0.7962	0.7464	0.6823
1.01	0.9462	0.9462	0.9333	0.9162	0.8831	0.8241	0.7745	0.7096
1.02	0.9572	0.9661	0.9594	0.9419	0.9099	0.8531	0.8035	0.7379
1.05	0.9840	0.9954	1.0186	1.0162	0.9886	0.9354	0.8872	0.8222
1.10	1.0162	1.0280	1.0593	1.0990	1.1015	1.0617	1.0186	0.9572
1.15	1.0375	1.0520	1.0814	1.1376	1.1858	1.1722	1.1403	1.0864
1.20	1.0544	1.0691	1.0990	1.1588	1.2388	1.2647	1.2474	1.2050
1.30	1.0715	1.0914	1.1194	1.1776	1.2853	1.3868	1.4125	1.4061
1.40	1.0814	1.0990	1.1298	1.1858	1.2942	1.4488	1.5171	1.5524
1.50	1.0864	1.1041	1.1350	1.1858	1.2942	1.4689	1.5740	1.6520
1.60	1.0864	1.1041	1.1350	1.1858	1.2883	1.4689	1.5996	1.7140
1.70	1.0864	1.1041	1.1324	1.1803	1.2794	1.4622	1.6033	1.7458
1.80	1.0839	1.1015	1.1298	1.1749	1.2706	1.4488	1.5959	1.7620
1.90	1.0814	1.0990	1.1272	1.1695	1.2618	1.4355	1.5849	1.7620
2.00	1.0814	1.0965	1.1220	1.1641	1.2503	1.4191	1.5704	1.7539
2.20	1.0765	1.0914	1.1143	1.1535	1.2331	1.3900	1.5346	1.7219
2.40	1.0715	1.0864	1.1066	1.1429	1.2190	1.3614	1.4997	1.6866
2.60	1.0666	1.0814	1.1015	1.1350	1.2023	1.3397	1.4689	1.6482
2.80	1.0641	1.0765	1.0940	1.1272	1.1912	1.3183	1.4388	1.6144
3.00	1.0593	1.0715	1.0889	1.1194	1.1803	1.3002	1.4158	1.5813
3.50	1.0520	1.0617	1.0789	1.1041	1.1561	1.2618	1.3614	1.5101
4.00	1.0471	1.0544	1.0691	1.0914	1.1403	1.2303	1.3213	1.4555

Chemical species

Miscellaneous inorganics:

Carbon monoxide

Carbon dioxide

Carbon disulfide Chlorine

Hydrogen sulfide

Hydrogen chloride

Hydrogen cyanide

Nitrogen dioxide

Dinitrogen tetroxide

Air Ammonia

Bromine

Hydrogen

Nitrogen

Nitrous oxide Nitric oxide

Oxygen Sulfur dioxide

Sulfur trioxide

 $10^{-5} D$

-0.016

-0.186

-0.154

-0.031

-1.157

-0.906

-0.344

-0.232

-0.725

0.083

0.151

0.040

-0.9280.014

-0.792 -2.787 -0.227

-1.015 -2.028

0.121

.

.

.

.

.

.

.

.

.

.

.

106 C

Table C.I Heat Capacities of Gases in the Ideal-Gas State Constants in equation $C_p^{ig}/R = A + BT + CT^2 + DT^{-2}$ T (kelvins) from 298.15 to $T_{\rm max}$

 $C_{P_{298}}^{ig}/R$

 $10^{3} B$

Paraffins: CH4 1500 4.217 1.702 9.081 -2.164Methane 19.225 28.785 C₂H₆ C₃H₈ C₄H₁₀ Ethane 1500 6.369 1.131 -5.5611.213 1.935 1.677 2.464 9.001 -8.824Propane n-Butane 1500 1500 11.928 36.915 -11.402C₄H₁₀ C₅H₁₂ iso-Butane n-Pentane 1500 1500 $11.901 \\ 14.731$ 37.853 45.351 -11.945-14.11153.722 62.127 n-Hexane 1500 1500 -16.791 -19.486C6H14 17.550 3.025 n-Heptane n-Octane 20.361 3.570 C_7H_{16} 1500 4.108 70.567 -22.20823.174 C8H18 1-Alkenes: C₂H₄ C₃H₆ C₄H₈ C₅H₁₀ C₆H₁₂ 1500 1500 Ethylene 5.325 7.792 14.394 22.706 1.424 Propylene 1-Butene 1.637 -6.91531.630 39.753 48.189 1500 10.520 1.967 -9.8732.691 3.220 3.768 1-Pentene 1-Hexene 1500 1500 -12.447 -15.15713.437 16.240 56.588 64.960 1500 19 053 1-Heptene 1500 4.324 -20.5211-Octene C₈H₁₆ 21.868 Miscellaneous organics: Acetaldehyde C2H4O 1000 6.506 1.693 17.978 -6.158C₂H₂ C₆H₆ C₄H₆ 6.132 -0.206 1500 1500 5.253 10.259 Acetylene 1.952 -1.299-13.30139.064 Benzene 1,3-Butadiene 1500 10.720 2.734 26.786 C₆H₁₂ C₂H₆O Cyclohexane Ethanol 1500 1500 13.121 8.948 -3.876 3.518 -20.92863.249 20.001 -6.002C₈H₁₀ C₂H₄O 1500 1000 55.380 23.463 Ethylbenzene 15.993 -18.476Ethylene oxide Formaldehyde 5 784 0.385 -92961500 1500 2.264 2.211 7.022 12.216 50.192 CH₂O 4.191 -1.877-3.450Methanol CH₄O 5.547 1500 15.534 2.050 -16.662Styrene C_8H_8 Toluene 1500 12.922 0.290 47.052 -15.716

3.509 4.269

4.337 3.507

4.467

5.532 4.082

3.468 4.114

3.512

4.326 3.502 4.646 3.590

4.447

9.198

3.535 4.796 6.094

4.038

3.355 3.578

4.493 3.376 5.457

6.311 4.442

3.249 3.931

3.156

4.736 3.280 5.328 3.387

.982

11.660

3.639 5.699 8.060

0.575

3.020

0.056 0.557

1.045

0.805 0.089

0.422

1.490

0.623

1.359 0.593

1.214 0.629

1.195 2.257

0.506

0.801 1.056

1.450

^{*}Selected from H. M. Spencer, *Ind.* Eng. Chem., vol. 40, pp. 2152–2154, 1948; K. K. Kelley, *U.S.Bur.* Mines *Bull.* 584, 1960; *L.* B. Pankratz, U.S. *Bur.* Mines *Bull.* 672, 1982.

2000 1800

3000

2500 2000

1800 3000

3000 2300

2000

2500 2000

2000 2000

2000

2000

2000

2000 2000

2000

NH3

 \mathbf{Br}_2

CO

 CO_2

 CS_2 Cl_2

H2S

HCN N₂

N₂O NO

NO2

N₂O₄ O₂

SO₂

SO3

H₂O

 H_2

Table C.4 Standard Enthalpies and Gibbs Energies of Formation at 298.15 K (25°C) †

Joules per mole of the substance formed

		State	$\Delta H_{f_{298}}^{\circ}$	$\Delta G_{f_{298}}^{\circ}$
Chemical species		(Note 2)	(Note 1)	(Note 1)
Paraffins:				
Methane	CH_4	(g)	-74520	-50460
Ethane	C_2H_6	(g)	-83820	-31855
Propane	C_3H_8	(g)	-104680	-24290
n-Butane	C_4H_{10}	(g)	-125790	-16570
n-Pentane	C_5H_{12}	(g)	-146760	-8650
n-Hexane	C_6H_{14}	(g)	-166920	150
n-Heptane	C7H16	(g)	-187780	8 260
n-Octane	C_8H_{18}	(g)	-208750	16 260
1-Alkenes:				
Ethylene	C_2H_4	(g)	52 510	68 460
Propylene	C_3H_6	(g)	19 710	62 205
I-Butene	C_4H_8	(g)	-540	70 340
1-Pentene	C_5H_{10}	(g)	-21280	78 410
1-Hexene	C_6H_{12}	(g)	-41950	86 830
1-Нерtеле	C_7H_{14}	(g)	-62760	
Miscellaneous organics:				
Acetaldehyde	C_2H_4O	(g)	-166190	-128860
Acetic acid	$C_2H_4O_2$	(1)	-484500	-389 900
Acetylene	C_2H_2	(g)	227 480	209 970
Benzene	C_6H_6	(g)	82 930	129 665
Benzene	C_6H_6	(I)	49 080	124 520
1,3-Butadiene	C_4H_6	(g)	109 240	149 795
Cyclohexane	C_6H_{12}	(g)	-123140	31 920
Cyclohexane	C_6H_{12}	(<i>l</i>)	-156230	26 850
1,2-Ethanediol	$C_2H_6O_2$	(I)	-454800	-323080
Ethanol	C ₂ H ₆ O	(g)	$-235\ 100$	-168490
Ethanol	C ₂ H ₆ O	(I)	-277690	-174780
Ethylbenzene	C_8H_{10}	(g)	29 920	130 890
Ethylene oxide	C ₂ H ₄ O	(g)	-52630	-13010
Form al dehy de	CH ₂ O	(g)	-108570	-102530
Methanol	CH ₄ O	(g)	-200660	-161960
Methanol	CH ₄ O	(1)	-238660	-166270
Methylcyclohexane	C_7H_{14}	(g)	-154770	27 480
Methylcyclohexane	C_7H_{14}	(I)	$-190\ 160$	20 560
Styrene	C_8H_8	(g)	147 360	213 900
Toluene	C_7H_8	(g)	50 170	122 050
Toluene	C_7H_8	(I)	12 180	113 630

Table C.4 (Continued)

		State	$\Delta H_{f_{298}}^{\circ}$	$\Delta G_{f_{298}}^{\circ}$
Chemical species		(Note 2)	(Note 1)	(Note 1)
Miscellaneous inorganics:				
Ammonia	NH_3	(g)	-46 110	-16 450
Ammonia	NH_3	(aq)		-26500
Calcium carbide	CaC ₂	(s)	-59 800	-64 900
Calcium carbonate	CaCO ₃	(s)	-1206920	-1128790
Calcium chloride	CaCl ₂	(s)	-795800	$-748\ 100$
Calcium chloride	CaCl ₂	(aq)		-8101900
Calcium chloride	CaCl ₂ -6H ₂ O	(s)	-2607 900	OFFICE ATTEMPTO
Calcium hydroxide	Ca(OH) ₂	(s)	-986 090	-898 490
Calcium hydroxide	Ca(OH) ₂	(aq)	200 020	-868 070
Calcium oxide	CaO	(s)	-635 090	-604 030
Carbon dioxide	CO ₂	(g)	-393509	-394 359
Carbon monoxide	CO	(\widetilde{g})	-110525	-137169
Hydrochloric acid	HCI	(g)	-92 307	-95 299
Hydrogen cyanide	HCN	(g)	135 100	124 700
Hydrogen sulfide	H ₂ S	(g)	-20 630	-33560
Iron oxide	FeO	(s)	-272000	2233
Iron oxide (hematite)	Fc ₂ O ₃	(s)	-824 200	-742200
Iron oxide (magnetite)	Fe ₃ O ₄	(s)	-1118400	-1015400
Iron sulfide (pyrite)	FeS ₂	(s)	-178 200	= 166 900
Lithium chloride	LiCÎ	(s)	-408 610	100 3 0 0
Lithium chloride	LiCl·H ₂ O	(s)	-712580	
Lithium chloride	LiCl-2H ₂ O	(s)	-1012650	
Lithium chloride	LiCl-3H ₂ O	(s)	-1311 300	
Nitric acid	HNO3	(l)	-174 100	-80 710
Nitric acid	HNO ₃	(aq)	-174 100	-111250
Nitrogen oxides	NO	(g)	90 250	86 550
Nidogenoxides	NO ₂	(8)	33 180	51 310
	$N_2\bar{O}$	(g)	82 050	104 200
	N_2O_4	(g)	9 160	97 540
Sodium carbonate	Na ₂ CO ₃	(s)	-1130 680	-1044 440
Sodium carbonate	Na ₂ CO ₃ ·10H ₂ O	(s)	-4081 320	101111
Sodium chloride	NaCl	(s)	-411 153	-384 138
Sodium chloride	NaCl	(aq)	.11 100	-393 133
Sodium hydroxide	NaOH	(s)	-425 609	-379 494
Sodium hydroxide	NaOH	(aq)		-419 150
Sulfur dioxide	SO ₂	(g)	-296830	-300 194
Sulfurtrioxide	SO ₃	(g)	-395 720	-371 060
Sulfur trioxide	SO ₃	(1)	-441 040	2,1000
Sulfuric acid	H ₂ SO ₄	(1)	-813 989	-690 003
Sulfuric acid	H ₂ SO ₄	(ag)	013 707	-744 530
Water	H ₂ O	(8)	-241818	-228 572
Water	H_2O	(1)	-285 830	-237129

[†]From TRC Thermodynamic Tables —Hydrocarbons, Thermodynamics Research Center, Texas A & M Univ. System, College Station, TX; "The NBS Tables of Chemical Thermodynamic Properties," *J.* Phys. and Chem. Reference Data, vol. 11, supp. 2, 1982.

Notes

- 1. The standard property changes of formation $\Delta H^{\circ}_{f_{298}}$ and $\Delta G^{\circ}_{f_{298}}$ are the changes occurring when 1 mol of the listed compound is formed from its elements with each substance in its standard state at 298.15 K (25°C).
- 2. Standard states: (a) Gases (g): pure ideal gas at 1 bar and 298.15 K (25°C). (b) Liquids (l) and solids (s): pure substance at 1 bar and 298.15 K (25°C). (c) Solutes in aqueous solution (aq): Hypothetical ideal 1-molal solution of solute in water at 1 bar and 298.15 K (25°C).

892 | Thermodynamics

TABLE A	-5											
		–Pressure t	able									
		Specific volume, m ³ /kg		Internal energy, kJ/kg			Enthalpy, kJ/kg				<i>Entropy,</i> kJ/kg · K	
Press., P kPa	Sat. temp., $T_{\rm sat}$ °C	Sat. liquid, v _f	Sat. vapor, v _g	Sat. liquid, <i>u_f</i>	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h_f	Evap., h _{fg}	Sat. vapor, h _g	Sat. liquid, s _f	Evap., s_{fg}	Sat. vapor, s_g
1.0 1.5 2.0 2.5 3.0	6.97 13.02 17.50 21.08 24.08	0.001000 0.001001 0.001001 0.001002 0.001003		29.302 54.686 73.431 88.422 100.98	2355.2 2338.1 2325.5 2315.4 2306.9	2384.5 2392.8 2398.9 2403.8 2407.9	29.303 54.688 73.433 88.424 100.98	2484.4 2470.1 2459.5 2451.0 2443.9	2513.7 2524.7 2532.9 2539.4	0.1059 0.1956 0.2606 0.3118 0.3543	8.8690 8.6314 8.4621 8.3302	8.9749 8.8270 8.7227
4.0 5.0 7.5 10 15	28.96 32.87 40.29 45.81 53.97	0.001004 0.001005 0.001008 0.001010 0.001014	34.791 28.185 19.233 14.670 10.020	121.39 137.75 168.74 191.79 225.93	2293.1 2282.1 2261.1 2245.4 2222.1	2414.5 2419.8 2429.8 2437.2 2448.0	121.39 137.75 168.75 191.81 225.94	2432.3 2423.0 2405.3 2392.1 2372.3	2560.7 2574.0	0.4224 0.4762 0.5763 0.6492 0.7549	8.0510 7.9176 7.6738 7.4996 7.2522	8.4734 8.3938 8.2501 8.1488 8.0071
20	60.06	0.001017	7.6481	251.40	2204.6	2456.0	251.42	2357.5	2608.9	0.8320	7.0752	7.9073
25	64.96	0.001020	6.2034	271.93	2190.4	2462.4	271.96	2345.5	2617.5	0.8932	6.9370	7.8302
30	69.09	0.001022	5.2287	289.24	2178.5	2467.7	289.27	2335.3	2624.6	0.9441	6.8234	7.7675
40	75.86	0.001026	3.9933	317.58	2158.8	2476.3	317.62	2318.4	2636.1	1.0261	6.6430	7.6691
50	81.32	0.001030	3.2403	340.49	2142.7	2483.2	340.54	2304.7	2645.2	1.0912	6.5019	7.5931
75	91.76	0.001037	2.2172	384.36	2111.8	2496.1	384.44	2278.0	2684.9	1.2132	6.2426	7.4558
100	99.61	0.001043	1.6941	417.40	2088.2	2505.6	417.51	2257.5		1.3028	6.0562	7.3589
101.325	99.97	0.001043	1.6734	418.95	2087.0	2506.0	419.06	2256.5		1.3069	6.0476	7.3545
125	105.97	0.001048	1.3750	444.23	2068.8	2513.0	444.36	2240.6		1.3741	5.9100	7.2841
150	111.35	0.001053	1.1594	466.97	2052.3	2519.2	467.13	2226.0		1.4337	5.7894	7.2231
175	116.04	0.001057	1.0037	486.82	2037.7	2524.5	487.01	2213.1	2700.2	1.4850	5.6865	7.1716
200	120.21	0.001061	0.88578	504.50	2024.6	2529.1	504.71	2201.6	2706.3	1.5302	5.5968	7.1270
225	123.97	0.001064	0.79329	520.47	2012.7	2533.2	520.71	2191.0	2711.7	1.5706	5.5171	7.0877
250	127.41	0.001067	0.71873	535.08	2001.8	2536.8	535.35	2181.2	2716.5	1.6072	5.4453	7.0525
275	130.58	0.001070	0.65732	548.57	1991.6	2540.1	548.86	2172.0	2720.9	1.6408	5.3800	7.0207
300	133.52	0.001073	0.60582	561.11	1982.1	2543.2	561.43	2163.5	2724.9	1.6717	5.3200	6.9917
325	136.27	0.001076	0.56199	572.84	1973.1	2545.9	573.19	2155.4	2728.6	1.7005	5.2645	6.9650
350	138.86	0.001079	0.52422	583.89	1964.6	2548.5	584.26	2147.7	2732.0	1.7274	5.2128	6.9402
375	141.30	0.001081	0.49133	594.32	1956.6	2550.9	594.73	2140.4	2735.1	1.7526	5.1645	6.9171
400	143.61	0.001084	0.46242	604.22	1948.9	2553.1	604.66	2133.4	2738.1	1.7765	5.1191	6.8955
450	147.90	0.001088	0.41392	622.65	1934.5	2557.1	623.14	2120.3	2743.4	1.8205	5.0356	6.8561
500	151.83	0.001093	0.37483	639.54	1921.2	2560.7	640.09	2108.0	2748.1	1.8604	4.9603	6.8207
550	155.46	0.001097	0.34261	655.16	1908.8	2563.9	655.77	2096.6	2752.4	1.8970	4.8916	6.7886
600	158.83	0.001101	0.31560	669.72	1897.1	2566.8	670.38	2085.8	2756.2	1.9308	4.8285	6.7593
650	161.98	0.001104	0.29260	683.37	1886.1	2569.4	684.08	2075.5	2759.6	1.9623	4.7699	6.7322
700	164.95	0.001108	0.27278	696.23	1875.6	2571.8	697.00	2065.8	2762.8	1.9918	4.7153	6.7071
750	167.75	0.001111	0.25552	708.40	1865.6	2574.0	709.24	2056.4	2765.7	2.0195	4.6642	6.6837