

PROGRAM : NATIONAL DIPLOMA

CHEMICAL ENGINEERING

SUBJECT : THERMODYNAMICS III

CODE : **CIT3111**

DATE : WINTER EXAMINATION MAY 2019

DURATION : 3 HRS

WEIGHT : 40:60

TOTAL MARKS : 100

EXAMINER(S) : DR T FALAYI

MODERATOR : DR A MAMVURA

NUMBER OF PAGES : 14 PAGES

REQUIREMENTS : Use of scientific (non-programmable) calculator is permitted

(only one per candidate); graph paper

HINTS AND INSTRUCTIONS TO CANDIDATE(S):

- Purpose of assessment is to determine not only if you can write down an answer, but also to assess whether you understand the concepts, principles and expressions involved. Set out solutions in a logical and concise manner with justification for the steps followed.
- ATTEMPT ALL QUESTIONS. Please answer each question to the best of your ability.
- Write your details (module name and code, ID number, student number etc.) on script(s).
- Number each question clearly; questions may be answered in any order.
- Make sure that you <u>read each question carefully</u> before attempting to answer the question.
- Show all steps (and units) in calculations; this is a 'closed book' test.
- Ensure your responses are legible, clear and include relevant units (where appropriate).
- Round off all answers tom 3 decimal places

Question One [Total: 10 Marks]

Define the following

a)	Isothermal process	[2]
b)	Isochoric process	[2]
c)	Isobaric process	[2]
d)	Adiabatic process	[2]
e)	Intensive property	[2]

Question Two [Total: 14 Marks]

- a) A horizontal piston/cylinder arrangement is placed in a constant-temperature bath. The piston slides in the cylinder with negligible friction, and an external force holds it in place against an initial pressure of 20 bar. The initial gas volume is 0.03 m³. The external force on the piston is reduced gradually, and the gas expends isothermally as its volume trebles. If the volume of the gas is related to its pressure so that the product PV is constant, what is the work done by the gas in moving the external force? **Note the process is mechanically reversible.** [8]
- b) How much work would be done if the external force were suddenly reduced to half its value instead of being gradually reduced and the volume also trebled? [3]
- c) What is the efficiency of the system? [3]

Question Three [Total: 26 Marks]

Determine the molar volume (per kmole) of n-butane at 594.14 K and 35 bar by each of the following:

- (a) The Ideal-Gas equation [2]
- (b) The generalised compressibility-factor correlation [14]
- (c) The generalized Virial-coefficient correlation [10]

Use: $T_c = 425.1K$; $P_c = 37.96$ bar and $\omega = 0.2$

Question Four [Total: 25 Marks]

A steam power plant generates 1000 MW of electricity. The Reactor temperature is 450°C and the river has a water temperature of 25°C. Calculate

- a) The maximum thermal efficiency of the power plant [4]
- b) The minimum rate at which heat is discarded [6]
- c) If the actual heat discarded is 1200 W, calculate the actual thermal efficiency [7]
- d) Calculate the final temperature of the water using the actual efficiency if the river has a flow rate of 170 m³/s. Given that Cp=4185.5 J/(kg.K), ρ =1000 kg/m³. [8]

Question 5 [4 marks]

A binary liquid mixture consists of 60 mol ethylene and 40 mol propylene. At 423K, the vapour pressure of ethylene and propylene are 15.2 atm and 9.8 atm, respectively. Calculate the total pressure of the system assuming ideal solution assumption. [4].

Question 6 [21 Marks]

1000 kg of steam enters an adiabatic turbine at 15 MPa and 700°C and leaves at a pressure of 1.2 MPa. The process is reversible and at steady state. Determine the following:

a) work output of turbine [13]

b) Change in volume of steam [8]

END [Total: 100 Marks]

USEFUL EQUATIONS AND FORMULAE

$$PV = nRT;$$
 $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2};$ $v = \frac{V^t}{m};$ $\dot{m} = uA\rho;$ $\dot{n} = \frac{uA}{vM}; \rho = v^{-1};$ $\dot{V} = \frac{V}{t}$

$$t(^{o}C) = T(K) - 273.15; \qquad \qquad t(^{o}F) = T(R) - 459.67; \qquad \qquad t(^{o}F) = 1.8t(^{o}C) + 32;$$

$$P_g = \frac{F}{A} = \frac{mg}{A} = \frac{\rho Vg}{A} = \frac{Ah\rho g}{A};$$
 $P_{abs} = P_g(or \rho gh) + P_{atm}$

Interpolation:
$$M = \left(\frac{X_2 - X}{X_2 - X_1}\right) M_1 + \left(\frac{X - X_1}{X_2 - X_1}\right) M_2$$
 OR $M = \frac{M_1(X_2 - X) + M_2(X - X_1)}{X_2 - X_1}$

$$W = -PdV$$

Double Interpolation:

$$\begin{vmatrix} X_1 & X & X_2 \\ \hline Y_1 & M_{1,1} & & M_{1,2} \\ Y & & M = ? \\ Y_2 & M_{2,1} & & M_{2,2} \end{vmatrix} M = \left[\left(\frac{X_2 - X}{X_2 - X_1} \right) M_{1,1} + \left(\frac{X - X_1}{X_2 - X_1} \right) M_{1,2} \right] \frac{Y_2 - Y}{Y_2 - Y_1} + \left[\left(\frac{X_2 - X}{X_2 - X_1} \right) M_{2,1} + \left(\frac{X - X_1}{X_2 - X_1} \right) M_{2,2} \right] \frac{Y - Y_1}{Y_2 - Y_1}$$

$$\Delta E_{univ} = \Delta E_{syst} + \Delta E_{surr} = 0; \qquad \qquad \eta = \frac{W_{irreversible}}{W_{reversible}}; \qquad \qquad \frac{dm_{cv}}{dt} = \Delta m = \dot{m}_{out} - \dot{m}_{in}$$

Energy balance for open systems:
$$\frac{d(mU)_{cv}}{dt} = -\dot{m}\Delta \left[U + \frac{1}{2}u^2 + gh\right] + \dot{Q} + \dot{W}$$

Energy balance for steady-state flow processes: $\Delta \dot{m} \left(H + \frac{1}{2} u^2 + gh \right) = \dot{Q} + \dot{W}_s$

Single Phase:
$$\ln \frac{V_2}{V_1} = \beta (T_2 - T_1) - \kappa (P_2 - P_1)$$

Mechanically reversible closed system processes:

Constant V:
$$Q = n\Delta U = n \int_{T_1}^{T_2} C_v dT = nC_v \Delta T$$

Constant P:
$$Q = n\Delta H = n \int_{T_1}^{T_2} C_p dT = nC_p \Delta T;$$
 $W = -R(T_2 - T_1)$

Constant T:
$$Q = -W = RT_1 \ln \frac{V_2}{V_1} = -RT_1 \ln \frac{P_2}{P_1} = P_1 V_1 \ln \frac{V_2}{V_1} = -P_1 V_1 \ln \frac{P_2}{P_1}$$

Adiabatic:
$$\frac{T_2}{T_1} = \left(\frac{V_1}{V_2}\right)^{R/C_V}; \qquad \frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)^{R/C_P}; \qquad \frac{P_2}{P_1} = \left(\frac{V_1}{V_2}\right)^{C_P/C_V}; \qquad \gamma = \frac{C_P}{C_V};$$

Adiabatic:
$$W = \Delta U = C_V \Delta T = \frac{R\Delta T}{\gamma - 1} = \frac{P_2 V_2 - P_1 V_1}{\gamma - 1} = \frac{P_1 V_1}{\gamma - 1} \left[\left(\frac{P_2}{P_1} \right)^{\gamma - 1/\gamma} - 1 \right] = \frac{RT_1}{\gamma - 1} \left[\left(\frac{P_2}{P_1} \right)^{\gamma - 1/\gamma} - 1 \right]$$

For Carnot Cycle
$$\eta = 1 - \frac{Q_C}{Q_H} = 1 - \frac{T_c}{T_H} = \frac{W_{net}}{Q_H}$$
, $Q_C = Q_H - W$

<u>Virial equation</u> truncated to 2 terms: $Z = \frac{PV}{RT} = 1 + \frac{BP}{RT}$; truncated to 3 terms: $Z = 1 + \frac{B(T)}{V} + \frac{C(T)}{V^2}$;

<u>Lee/ Kesler correlation</u>: $Z = Z^o + \omega Z^1$;

<u>Generalized Pitzer correlation</u>: $Z = 1 + (B^0 + \omega B^1) \frac{P_r}{T_r}$ $(B^0 = 0.083 - \frac{0.422}{T_r^{1.6}})$; $B^1 = 0.139 - \frac{0.172}{T_r^{4.2}}$

IG: $Q = n\Delta H = n \int_{T_0}^{T_1} \frac{cp^{ig}}{R} dT = n \left[AT_o(\tau - 1) + \frac{B}{2}T_o^2(\tau^2 - 1) + \frac{C}{3}T_o^3(\tau^3 - 1) + \frac{D}{T_o}\left(\frac{\tau - 1}{\tau}\right) \right] = n \frac{\langle C_P \rangle_H}{R} (T_1 - T_0);$ where, $\tau = \frac{T}{T}$

 $\langle C_P \rangle_H = R \left[A + \frac{B}{2} T_o(\tau + 1) + \frac{C}{3} T_o^2(\tau^2 + \tau + 1) + \frac{D}{\tau T_o^2} \right]$

<u>Clapeyron equation</u>: $\Delta H = T\Delta V \frac{dP^{sat}}{dT}$

<u>General entropy change</u>: $\Delta S = C_p \ln \frac{T_2}{T_1} - \ln \frac{P_2}{P_1}$

 $\underline{\text{Entropy change for IG}} : \frac{\Delta S}{R} = \frac{\left\langle c_p^{ig} \right\rangle_S}{R} \ln \frac{T}{T_o} - \ln \frac{P}{P_o}; \frac{\left\langle c_p^{ig} \right\rangle_S}{R} = A + \left[BT_o + \left(CT_o^2 + \frac{D}{\tau^2 T_o^2} \right) \left(\frac{\tau + 1}{\tau} \right) \right] \left(\frac{\tau - 1}{\ln \tau} \right)$

For residual properties: $V^R = V - V^{ig}$; $H^R = H - H^{ig}$; $G^R = RT \ln \phi$

 $S^{R} = S - \left(S^{ig} + \frac{R}{Mr} \ln \frac{P_{2}}{P_{1}}\right); \qquad \frac{H^{R}}{RT_{c}} = \left(\frac{H^{R}}{RT_{c}}\right)^{0} + \omega \left(\frac{H^{R}}{RT_{c}}\right)^{1} \qquad ; \qquad \frac{S^{R}}{R} = \left(\frac{S^{R}}{R}\right)^{0} + \omega \left(\frac{S^{R}}{R}\right)^{1}$

 $\frac{H^R}{RT_G} = P_r \left[\left(0.083 - \frac{1.097}{T_r^{1.6}} \right) + \omega \left(0.139 - \frac{0.894}{T_r^{4.2}} \right) \right] \qquad ; \qquad \frac{S^R}{R} = -P_r \left[\frac{0.675}{T_r^{2.6}} + \omega \left(\frac{0.722}{T_r^{5.2}} \right) \right];$

 $Z = 1 + \beta - q\beta \frac{(Z - \beta)}{(Z + \epsilon \beta)(Z + \sigma \beta)}$

<u>Fugacity and fugacity coefficient</u>: $\phi = (\phi^0)(\phi^1)^{\omega}$; $f = \phi P$; $\ln \phi = (B^0 + \omega B^1)\frac{P_r}{T_r}$; $\ln \phi = \sum_i X_i \ln \phi_i$

Raoult's law: $y_i P = x_i P_i^{sat}$ where $P = \sum_i x_i P_i^{sat}$ or $P = \frac{1}{\sum_i y_i / P_i^{sat}}$

Modified Raoult's law: $y_i P = x_i \gamma_i P_i^{sat}$ where $P = \sum_i x_i \gamma_i P_i^{sat}$ or $P = \frac{1}{\sum_i y_i / \gamma_i P_i^{sat}}$

	Table A.1: Conversion Factors	Energy	$1 J = 1 kg m^2 s^{-2} = 1 N m$
Quantity	Conversion		= $1 \text{ m}^3 \text{ Pa} = 10^{-5} \text{ m}^3 \text{ bar} = 10 \text{ cm}^3 \text{ bar}$ = $9.86923 \text{ cm}^3 \text{ (atm)}$
Length	1 m = 100 cm = 3.28084(ft) = 39.3701(in)		= 10^7 (dyne) cm = 10^7 (erg) = 0.239006 (cal)
Mass	$1 \text{ kg} = 10^3 \text{ g}$ = 2.20462(lb _m)		= $5.12197 \times 10^{-3} (\text{ft})^3 (\text{psia}) = 0.737562 (\text{ft}) (\text{lbf})$ = $9.47831 \times 10^{-4} (\text{Btu}) = 2.77778 \times 10^{-7} \text{ kWhr}$
Force	$1 \text{ N} = 1 \text{ kg m s}^{-2^{\frac{1}{1000000000000000000000000000000000$	Power	1 kW = 10^3 W = 10^3 kg m ² s ⁻³ = 10^3 J s ⁻¹ = 239.006 (cal) s ⁻¹ = 737.562 (ft)(lb _f) s ⁻¹ = 0.947831 (Btu) s ⁻¹
Pressure	1 bar = 10^5 kg m ⁻¹ s ⁻² = 10^5 N m ⁻² = 10^5 Pa = 10^2 kPa = 10^6 (dyne) cm ⁻² = 0.986923 (atm) = 14.5038 (psia) = 750.061 (torr)	Table	= 1.34102(hp) e A.2: Values of the Universal Gas Constant
Volume	$1 \text{ m}^3 = 10^6 \text{ cm}^3 = 10^3 \text{ liters}$ = 35.3147(ft) ³ = 264.172(gal)	= 83.14 cm = 82.06 cm	10 10
Density	1 g cm ⁻³ = 10^3 kg m ⁻³ = $62.4278(1b_m)(ft)^{-3}$	= 0.7302(ft	3 (atm)(lb mol) ⁻¹ (R) ⁻¹ = 10.73(ft) ³ (psia)(lb mol) ⁻¹ (R) ⁻¹ lb _f)(lb mol) ⁻¹ (R) ⁻¹

632	_			APPE	ENDIX B	B. Properties of Pure	e Species
	Table	B.I P	ropertie	es of Pu	re Spec	ies	
	Molar mass	ω	T _c /K	$P_{\rm c}$ /bar	Z_c	V_c cm ³ mol ⁻¹ or 10^{-3} m ³ kmol ⁻¹	T_n/\mathbf{K}
Methane	16.043	0.012	190.6	45.99	0.286	98.6	111.4
Ethane	30.070	0.100	305.3	48.72	0.279	145.5	184.6
Propane	44.097	0.152	369.8	42.48	0.276	200.0	231.1
n-Butane	58.123	0.200	425.1	37.96	0.274	255.	272.7
n-Pentane	72.150	0.252	469.7	33.70	0.270	313.	309.2
n-Hexane	86.177	0.301	507.6	30.25	0.266	371.	341.9
n-Heptane	100.204	0.350	540.2	27.40	0.261	428.	371.6
n-Octane	114.231	0.400	568.7	24.90	0.256	486.	398.8
n-Nonane	128.258	0.444	594.6	22.90	0.252	544.	424.0
n-Decane	142.285	0.492	617.7	21.10	0.247	600.	447.3
Isobutane	58.123	0.181	408.1	36.48	0.282	262.7	261.4
Isooctane	114.231	0.302	544.0	25.68	0.266	468.	372.4
Cyclopentane	70.134	0.196	511.8	45.02	0.273	258.	322.4
Cyclohexane	84.161	0.210	553.6	40.73	0.273	308.	353.9
Methylcyclopentane	84.161	0.230	532.8	37.85	0.273	319.	345.0
Methylcyclohexane	98.188	0.235	572.2	34.71	0.272	368.	374.1
Ethylene	28.054	0.233	282.3	50.40	0.281	131.	169.4
Propylene	42.081	0.140	365.6	46.65			
1-Butene	56.108	0.191	420.0	40.63	0.289 0.277	188.4 239.3	225.5 266.9
cis-2-Butene	56.108	0.191	435.6	42.43			
trans-2-Butene	56.108		428.6	41.00	0.273	233.8	276.9
1-Hexene		0.218	504.0	31.40	0.275	237.7	274.0
	84.161				0.265	354.	336.3
Isobutylene	56.108	0.194	417.9	40.00	0.275	238.9	266.3
1,3-Butadiene	54.092	0.190	425.2	42.77	0.267	220.4	268.7
Cyclohexene	82.145	0.212	560.4	43.50	0.272	291.	356.1
Acetylene	26.038	0.187	308.3	61.39	0.271	113.	189.4
Benzene	78.114	0.210	562.2	48.98	0.271	259.	353.2
Toluene	92.141	0.262	591.8	41.06	0.264	316.	383.8
Ethylbenzene	106.167	0.303	617.2	36.06	0.263	374.	409.4
Cumene	120.194	0.326	631.1	32.09	0.261	427.	425.6
o-Xylene	106.167	0.310	630.3	37.34	0.263	369.	417.6
m-Xylene	106.167	0.326	617.1	35.36	0.259	376.	412.3
p-Xylene	106.167	0.322	616.2	35.11	0.260	379.	411.5
Styrene	104.152	0.297	636.0	38.40	0.256	352.	418.3
Naphthalene	128.174	0.302	748.4	40.51	0.269	413.	
Biphenyl	154.211	0.365	789.3	38.50	0.295	502.	528.2
Formaldehyde	30.026	0.282	408.0	65.90	0.223	115.	254.1
Acetaldehyde	44.053	0.291	466.0	55.50	0.221	154.	294.0
Methyl acetate	74.079	0.331	506.6	47.50	0.257	228.	330.1
Ethyl acetate	88.106	0.366	523.3	38.80	0.255	286.	350.2
Acetone	58.080	0.307	508.2	47.01	0.233	209.	329.4
Methyl ethyl ketone	72.107	0.323	535.5	41.50	0.249	267.	352.8
Diethyl ether	74.123	0.281	466.7	36.40	0.263	280.	307.6
Methyl t-butyl ether	88.150	0.266	497.1	34.30	0.273	329.	328.4
Methanol	32.042	0.564	512.6	80.97	0.224	118.	337.9

Table E.I Values of Z ⁰											
		-	Table	E.I Valu	ies of Z^0						
$P_r =$	0.0100	0.0500	0.1000	0.2000	0.4000	0.6000	0.8000	1.0000			
T_r											
0.30	0.0029	0.0145	0.0290	0.0579	0.1158	0.1737	0.2315	0.2892			
0.35	0.0026	0.0130	0.0261	0.0522	0.1043	0.1564	0.2084	0.2604			
0.40	0.0024	0.0119	0.0239	0.0477	0.0953	0.1429	0.1904	0.2379			
0.45	0.0022	0.0110	0.0221	0.0442	0.0882	0.1322	0.1762	0.2200			
0.50	0.0021	0.0103	0.0207	0.0413	0.0825	0.1236	0.1647	0.2056			
0.55	0.9804	0.0098	0.0195	0.0390	0.0778	0.1166	0.1553	0.1939			
0.60	0.9849	0.0093	0.0186	0.0371	0.0741	0.1109	0.1476	0.1842			
0.65	0.9881	0.9377	0.0178	0.0356	0.0710	0.1063	0.1415	0.1765			
0.70	0.9904	0.9504	0.8958	0.0344	0.0687	0.1027	0.1366	0.1703			
0.75	0.9922	0.9598	0.9165	0.0336	0.0670	0.1001	0.1330	0.1656			
0.80	0.9935	0.9669	0.9319	0.8539	0.0661	0.0985	0.1307	0.1626			
0.85	0.9946	0.9725	0.9436	0.8810	0.0661	0.0983	0.1301	0.1614			
0.90	0.9954	0.9768	0.9528	0.9015	0.7800	0.1006	0.1321	0.1630			
0.93	0.9959	0.9790	0.9573	0.9115	0.8059	0.6635	0.1359	0.1664			
0.95	0.9961	0.9803	0.9600	0.9174	0.8206	0.6967	0.1410	0.1705			
0.97	0.9963	0.9815	0.9625	0.9227	0.8338	0.7240	0.5580	0.1779			
0.98	0.9965	0.9821	0.9637	0.9253	0.8398	0.7360	0.5887	0.1844			
0.99	0.9966	0.9826	0.9648	0.9277	0.8455	0.7471	0.6138	0.1959			
1.00	0.9967	0.9832	0.9659	0.9300	0.8509	0.7574	0.6355	0.2901			
1.01	0.9968	0.9837	0.9669	0.9322	0.8561	0.7671	0.6542	0.4648			
1.02	0.9969	0.9842	0.9679	0.9343	0.8610	0.7761	0.6710	0.5146			
1.05	0.9971	0.9855	0.9707	0.9401	0.8743	0.8002	0.7130	0.6026			
1.10	0.9975	0.9874	0.9747	0.9485	0.8930	0.8323	0.7649	0.6880			
1.15	0.9978	0.9891	0.9780	0.9554	0.9081	0.8576	0.8032	0.7443			
1.20	0.9981	0.9904	0.9808	0.9611	0.9205	0.8779	0.8330	0.7858			
1.30	0.9985	0.9926	0.9852	0.9702	0.9396	0.9083	0.8764	0.8438			
1.40	0.9988	0.9942	0.9884	0.9768	0.9534	0.9298	0.9062	0.8827			
1.50	0.9991	0.9954	0.9909	0.9818	0.9636	0.9456	0.9278	0.9103			
1.60	0.9993	0.9964	0.9928	0.9856	0.9714	0.9575	0.9439	0.9308			
1.70	0.9994	0.9971	0.9943	0.9886	0.9775	0.9667	0.9563	0.9463			
1.80	0.9995	0.9977	0.9955	0.9910	0.9823	0.9739	0.9659	0.9583			
1.90	0.9996	0.9982	0.9964	0.9929	0.9861	0.9796	0.9735	0.9678			
2.00	0.9997	0.9986	0.9972	0.9944	0.9892	0.9842	0.9796	0.9754			
2.20	0.9998	0.9992	0.9983	0.9967	0.9937	0.9910	0.9886	0.9865			
2.40	0.9999	0.9996	0.9991	0.9983	0.9969	0.9957	0.9948	0.9941			
2.60	1.0000	0.9998	0.9997	0.9994	0.9991	0.9990	0.9990	0.9993			
2.80	1.0000	1.0000	1.0001	1.0002	1.0007	1.0013	1.0021	1.0031			
3.00	1.0000	1.0002	1.0004	1.0008	1.0018	1.0030	1.0043	1.0057			
3.50	1.0001	1.0004	1.0008	1.0017	1.0035	1.0055	1.0075	1.0097			
4.00	1.0001	1.0005	1.0010	1.0021	1.0043	1.0066	1.0090	1.0115			

Table E.2 Values of \mathbf{Z}^1											
$P_r =$	0.0100	0.0500	0.1000	0.2000	0.4000	0.6000	0.8000	1.0000			
The said of	0.0100	0.0500	0.1000	0.2000	0.4000	0.0000	0.0000	1.0000			
T_r	0.0000	0.0040	0.0001	0.0161	0.0222	0.0494	0.0615	0.0006			
0.30	-0.0008	-0.0040	-0.0081	-0.0161	-0.0323	-0.0484	-0.0645	-0.0806			
0.35	-0.0009	-0.0046	-0.0093	-0.0185	-0.0370	-0.0554	-0.0738	-0.0921			
0.40	-0.0010	-0.0048	-0.0095	-0.0190	-0.0380	-0.0570	-0.0758	-0.0946			
0.45	-0.0009	-0.0047	-0.0094	-0.0187	-0.0374	-0.0560	-0.0745	-0.0929			
0.50	-0.0009	-0.0045	-0.0090	-0.0181	-0.0360	-0.0539	-0.0716	-0.0893			
0.55	-0.0314	-0.0043	-0.0086	-0.0172	-0.0343	-0.0513	-0.0682	-0.0849			
0.60	-0.0205	-0.0041	-0.0082	-0.0164	-0.0326	-0.0487	-0.0646	-0.0803			
0.65	-0.0137	-0.0772	-0.0078	-0.0156	-0.0309	-0.0461	-0.0611	-0.0759			
0.70	-0.0093	-0.0507	-0.1161	-0.0148	-0.0294	-0.0438	-0.0579	-0.0718			
0.75	-0.0064	-0.0339	-0.0744	-0.0143	-0.0282	-0.0417	-0.0550	-0.0681			
0.80	-0.0044	-0.0228	-0.0487	-0.1160	-0.0272	-0.0401	-0.0526	-0.0648			
0.85	-0.0029	-0.0152	-0.0319	-0.0715	-0.0268	-0.0391	-0.0509	-0.0622			
0.90	-0.0019	-0.0099	-0.0205	-0.0442	-0.1118	-0.0396	-0.0503	-0.0604			
0.93	-0.0015	-0.0075	-0.0154	-0.0326	-0.0763	-0.1662	-0.0514	-0.0602			
0.95	-0.0012	-0.0062	-0.0126	-0.0262	-0.0589	-0.1110	-0.0540	-0.0607			
0.97	-0.0010	-0.0050	-0.0101	-0.0208	-0.0450	-0.0770	-0.1647	-0.0623			
0.98	-0.0009	-0.0044	-0.0090	-0.0184	-0.0390	-0.0641	-0.1100	-0.0641			
0.99	-0.0008	-0.0039	-0.0079	-0.0161	-0.0335	-0.0531	-0.0796	-0.0680			
1.00	-0.0007	-0.0034	-0.0069	-0.0140	-0.0285	-0.0435	-0.0588	-0.0879			
1.01	-0.0006	-0.0034	-0.0060	-0.0120	-0.0240	-0.0351	-0.0429	-0.0223			
1.02	-0.0005	-0.0026	-0.0051	-0.0102	-0.0198	-0.0277	-0.0303	-0.0062			
1.02	-0.0003	-0.0020 -0.0015	-0.0031	-0.0102 -0.0054	-0.0092	-0.0277 -0.0097	-0.0303				
1.10	0.0000	0.0000	0.0029					0.0220			
1.15	0.0002	0.0000		0.0007	0.0038	0.0106	0.0236	0.0476			
1.13	0.0002	0.0011	0.0023	0.0052 0.0084	0.0127 0.0190	0.0237	0.0396	0.0625 0.0719			
1.30	0.0006	0.0030	0.0061	0.0125	0.0267	0.0429	0.0612	0.0819			
1.40	0.0007	0.0036	0.0072	0.0147	0.0306	0.0477	0.0661	0.0857			
1.50	0.0008	0.0039	0.0078	0.0158	0.0323	0.0497	0.0677	0.0864			
1.60	0.0008	0.0040	0.0080	0.0162	0.0330	0.0501	0.0677	0.0855			
1.70	0.0008	0.0040	0.0081	0.0163	0.0329	0.0497	0.0667	0.0838			
1.80	0.0008	0.0040	0.0081	0.0162	0.0325	0.0488	0.0652	0.0814			
1.90	0.0008	0.0040	0.0079	0.0159	0.0318	0.0477	0.0635	0.0792			
2.00	0.0008	0.0039	0.0078	0.0155	0.0310	0.0464	0.0617	0.0767			
2.20	0.0007	0.0037	0.0074	0.0147	0.0293	0.0437	0.0579	0.0719			
2.40	0.0007	0.0035	0.0070	0.0139	0.0276	0.0411	0.0544	0.0675			
2.60	0.0007	0.0033	0.0066	0.0131	0.0260	0.0387	0.0512	0.0634			
2.80	0.0006	0.0031	0.0062	0.0124	0.0245	0.0365	0.0483	0.0598			
3.00	0.0006	0.0029	0.0059	0.0117	0.0232	0.0345	0.0456	0.0565			
3.50	0.0005	0.0026	0.0052	0.0103	0.0204	0.0303	0.0401	0.0497			
4.00	0.0005	0.0023	0.0046	0.0091	0.0182	0.0270	0.0357	0.0443			

3.50

4.00

1.0093

1.0116

1.0116

1.0139

1.0139

1.0162

1.0186

1.0233

1.0304

1.0375

		A	PPENDL	X E. The	Lee/Kesl	er Genero	alized-cor	relation			
Table E.15 Values of ϕ^0											
$P_r =$	1.0000	1.2000	1.5000	2.0000	3.0000	5.0000	7.0000	10.000			
T_r								A. C. A.			
0.30	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
0.35	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
0.40	0.0003	0.0003	0.0003	0.0002	0.0002	0.0002	0.0002	0.0003			
0.45	0.0016	0.0014	0.0012	0.0010	0.0008	0.0008	0.0009	0.0012			
0.50	0.0055	0.0048	0.0041	0.0034	0.0028	0.0025	0.0027	0.0034			
0.55	0.0146	0.0127	0.0107	0.0089	0.0072	0.0063	0.0066	0.0080			
0.60	0.0321	0.0277	0.0234	0.0193	0.0154	0.0132	0.0135	0.0160			
0.65	0.0611	0.0527	0.0445	0.0364	0.0289	0.0244	0.0245	0.0282			
0.70	0.1045	0.0902	0.0759	0.0619	0.0488	0.0406	0.0402	0.0453			
0.75	0.1641	0.1413	0.1188	0.0966	0.0757	0.0625	0.0610	0.0673			
0.80	0.2404	0.2065	0.1738	0.1409	0.1102	0.0899	0.0867	0.0942			
0.85	0.3319	0.2858	0.2399	0.1945	0.1517	0.1227	0.1175	0.1256			
0.90	0.4375	0.3767	0.3162	0.2564	0.1995	0.1607	0.1524	0.1611			
0.93	0.5058	0.4355	0.3656	0.2972	0.2307	0.1854	0.1754	0.1841			
0.95	0.5521	0.4764	0.3999	0.3251	0.2523	0.2028	0.1910	0.2000			
0.97	0.5984	0.5164	0.4345	0.3532	0.2748	0.2203	0.2075	0.2163			
0.98	0.6223	0.5370	0.4529	0.3681	0.2864	0.2296	0.2158	0.2244			
0.99	0.6442	0.5572	0.4699	0.3828	0.2978	0.2388	0.2244	0.2328			
1.00	0.6668	0.5781	0.4875	0.3972	0.3097	0.2483	0.2328	0.2415			
1.01	0.6792	0.5970	0.5047	0.4121	0.3214	0.2576	0.2415	0.2500			
1.02	0.6902	0.6166	0.5224	0.4266	0.3334	0.2673	0.2506	0.2582			
1.05	0.7194	0.6607	0.5728	0.4710	0.3690	0.2958	0.2773	0.2844			
1.10	0.7586	0.7112	0.6412	0.5408	0.4285	0.3451	0.3228	0.3296			
1.15	0.7907	0.7499	0.6918	0.6026	0.4875	0.3954	0.3690	0.3750			
1.20	0.8166	0.7834	0.7328	0.6546	0.5420	0.4446	0.4150	0.4198			
1.30	0.8590	0.8318	0.7943	0.7345	0.6383	0.5383	0.5058	0.5093			
1.40	0.8892	0.8690	0.8395	0.7925	0.7145	0.6237	0.5902	0.5943			
1.50	0.9141	0.8974	0.8730	0.8375	0.7745	0.6966	0.6668	0.6714			
1.60	0.9311	0.9183	0.8995	0.8710	0.8222	0.7586	0.7328	0.7430			
1.70	0.9462	0.9354	0.9204	0.8995	0.8610	0.8091	0.7907	0.8054			
1.80	0.9572	0.9484	0.9376	0.9204	0.8913	0.8531	0.8414	0.8590			
1.90	0.9661	0.9594	0.9506	0.9376	0.9162	0.8872	0.8831	0.9057			
2.00	0.9727	0.9683	0.9616	0.9528	0.9354	0.9183	0.9183	0.9462			
2.20	0.9840	0.9817	0.9795	0.9727	0.9661	0.9616	0.9727	1.0093			
2.40	0.9931	0.9908	0.9908	0.9886	0.9863	0.9931	1.0116	1.0568			
2.60	0.9977	0.9977	0.9977	0.9977	1.0023	1.0162	1.0399	1.0889			
2.80	1.0023	1.0023	1.0046	1.0069	1.0023	1.0328	1.0593	1.1117			
3.00	1.0025	1.0023	1.0040	1.0116	1.0209	1.0328	1.0740	1.1298			
2.60	1.0040	1.0009	1.0009	1.0110	1.0209	1.0423	1.0014	1.1290			

1.1508

1.1588

1.0593

1.0666

1.0914

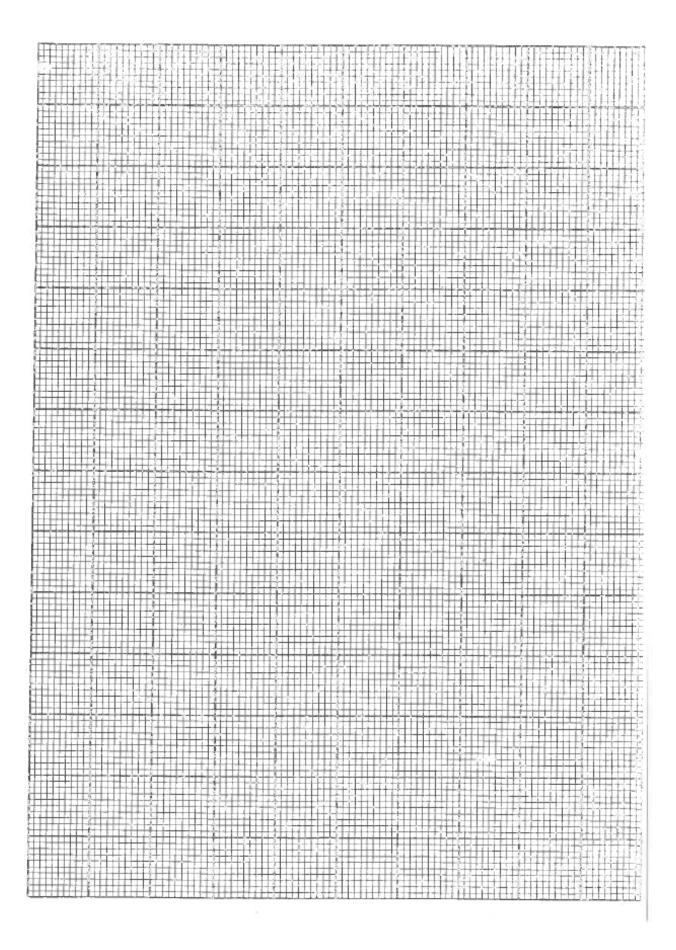

1.0990

			Table E	E.16 Val	ues of φ	1		
P. =	1.0000	1.2000	1.5000	2.0000	3.0000	5.0000	7.0000	10.000
T_r								
0.30	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.35	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.40	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.45	0.0002	0.0002	0.0002	0.0002	0.0001	0.0001	0.0001	0.0001
0.50	0.0013	0.0013	0.0013	0.0012	0.0011	0.0009	8000.0	0.0006
0.55	0.0063	0.0062	0.0061	0.0058	0.0053	0.0045	0.0039	0.0031
0.60	0.0210	0.0207	0.0202	0.0194	0.0179	0.0154	0.0133	0.0108
0.65	0.0536	0.0527	0.0516	0.0497	0.0461	0.0401	0.0350	0.0289
0.70	0.1117	0.1102	0.1079	0.1040	0.0970	0.0851	0.0752	0.0629
0.75	0.1995	0.1972	0.1932	0.1871	0.1754	0.1552	0.1387	0.1178
0.80	0.3170	0.3133	0.3076	0.2978	0.2812	0.2512	0.2265	0.1954
0.85	0.4592	0.4539	0.4457	0.4325	0.4093	0.3698	0.3365	0.2951
0.90	0.6166	0.6095	0.5998	0.5834	0.5546	0.5058	0.4645	0.4130
0.93	0.7145	0.7063	0.6950	0.6761	0.6457	0.5916	0.5470	0.4898
0.95	0.7798	0.7691	0.7568	0.7379	0.7063	0.6501	0.6026	0.5432
0.97	0.8414	0.8318	0.8185	0.7998	0.7656	0.7096	0.6607	0.5984
0.98	0.8730	0.8630	0.8492	0.8298	0.7962	0.7379	0.6887	0.6266
0.99	0.9036	0.8913	0.8790	0.8590	0.8241	0.7674	0.7178	0.6546
1.00	0.9311	0.9204	0.9078	0.8872	0.8531	0.7962	0.7464	0.6823
1.01	0.9462	0.9462	0.9333	0.9162	0.8831	0.8241	0.7745	0.7096
1.02	0.9572	0.9661	0.9594	0.9419	0.9099	0.8531	0.8035	0.7379
1.05	0.9840	0.9954	1.0186	1.0162	0.9886	0.9354	0.8872	0.8222
1.10	1.0162	1.0280	1.0593	1.0990	1.1015	1.0617	1.0186	0.9572
1.15	1.0375	1.0520	1.0814	1.1376	1.1858	1.1722	1.1403	1.0864
1.20	1.0544	1.0691	1.0990	1.1588	1.2388	1.2647	1.2474	1.2050
1.30	1.0715	1.0914	1.1194	1.1776	1.2853	1.3868	1.4125	1.4061
1.40	1.0814	1.0990	1.1298	1.1858	1.2942	1.4488	1.5171	1.5524
1.50	1.0864	1.1041	1.1350	1.1858	1.2942	1.4689	1.5740	1.6520
1.60	1.0864	1.1041	1.1350	1.1858	1.2883	1.4689	1.5996	1.7140
1.70	1.0864	1.1041	1.1324	1.1803	1.2794	1.4622	1.6033	1.7458
1.80	1.0839	1.1015	1.1298	1.1749	1.2706	1.4488	1.5959	1.7620
1.90	1.0814	1.0990	1.1272	1.1695	1.2618	1.4355	1.5849	1.7620
2.00	1.0814	1.0965	1.1220	1.1641	1.2503	1.4191	1.5704	1.7539
2.20	1.0765	1.0914	1.1143	1.1535	1.2331	1.3900	1.5346	1.7219
2.40	1.0715	1.0864	1.1066	1.1429	1.2190	1.3614	1.4997	1.6866
2.60	1.0666	1.0814	1.1015	1.1350	1.2023	1.3397	1.4689	1.6482
2.80	1.0641	1.0765	1.0940	1.1272	1.1912	1.3183	1.4388	1.6144
3.00	1.0593	1.0715	1.0889	1.1194	1.1803	1.3002	1.4158	1.5813
3.50	1.0520	1.0617	1.0789	1.1041	1.1561	1.2618	1.3614	1.5101
4.00	1.0471	1.0544	1.0691	1.0914	1.1403	1.2303	1.3213	1.4555

										Append	lix 1	l 89	
TABLE	A-6												
Superh	neated wat	er (<i>Conti</i>	nued)										
T	v	и	h	s	v	и	h	s	v	и	h	s	
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	
	P	= 1.00 M	Pa (179.8	8°C)	Р	= 1.20	MPa (187	.96°C)	P = 1.40 MPa (195.04°C)				
Sat.	0.19437	2582.8	2777.1	6.5850	0.16326	2587.8	2783.8	6.5217	0.14078	2591.8	2788.9	6.4675	
200	0.20602	2622.3	2828.3	6.6956	0.16934	2612.9	2816.1	6.5909	0.14303	2602.7	2803.0	6.4975	
250	0.23275	2710.4	2943.1	6.9265	0.19241	2704.7	2935.6	6.8313	0.16356	2698.9	2927.9	6.7488	
300	0.25799	2793.7	3051.6	7.1246	0.21386	2789.7	3046.3	7.0335	0.18233	2785.7	3040.9	6.9553	
350	0.28250	2875.7	3158.2	7.3029	0.23455	2872.7	3154.2	7.2139	0.20029	2869.7	3150.1	7.1379	
400	0.30661	2957.9	3264.5	7.4670		2955.5	3261.3	7.3793	0.21782	2953.1	3258.1	7.3046	
500	0.35411	3125.0	3479.1	7.7642	0.29464	3123.4	3477.0	7.6779	0.25216	3121.8	3474.8	7.6047	
600	0.40111	3297.5	3698.6	8.0311	0.33395	3296.3	3697.0	7.9456	0.28597	3295.1	3695.5	7.8730	
700	0.44783	3476.3	3924.1	8.2755	0.37297	3475.3	3922.9	8.1904	0.31951	3474.4	3921.7	8.1183	
800	0.49438	3661.7	4156.1	8.5024	0.41184	3661.0	4155.2	8.4176	0.35288	3660.3	4154.3	8.3458	
900	0.54083	3853.9	4394.8	8.7150	0.45059	3853.3	4394.0	8.6303	0.38614	3852.7	4393.3	8.5587	
1000	0.58721	4052.7	4640.0	8.9155		4052.2	4639.4	8.8310	0.41933	4051.7		8.7595	
1100	0.63354	4257.9	4891.4	9.1057		4257.5	4891.0	9.0212	0.45247	4257.0		8.9497	
1200	0.67983	4469.0	5148.9	9.2866		4468.7	5148.5	9.2022	0.48558	4468.3	5148.1	9.1308	
1300	0.72610	4685.8	5411.9	9.4593	0.60509	4685.5	5411.6	9.3750	0.51866	4685.1	5411.3	9.3036	
			Pa (201.3				MPa (207			2.00 MP			
Sat.	0.12374	2594.8	2792.8	6.4200	0.11037	2597.3			0.09959	2599.1		6.3390	
225	0.13293	2645.1	2857.8	6.5537	0.11678	2637.0			0.10381	2628.5		6.4160	
250	0.14190	2692.9	2919.9	6.6753	0.12502	2686.7			0.11150	2680.3		6.5475	
300	0.15866	2781.6	3035.4	6.8864	0.14025	2777.4			0.12551	2773.2		6.7684	
350	0.17459	2866.6	3146.0	7.0713	0.15460	2863.6			0.13860	2860.5		6.9583	
400	0.19007	2950.8	3254.9	7.2394	0.16849	2948.3			0.15122	2945.9		7.1292	
500	0.22029	3120.1	3472.6	7.5410	0.19551	3118.5			0.17568	3116.9		7.4337	
600	0.24999	3293.9	3693.9	7.8101	0.22200	3292.7			0.19962	3291.5		7.7043	
700	0.27941	3473.5	3920.5	8.0558	0.24822	3472.6			0.22326	3471.7		7.9509	
800	0.30865	3659.5 3852.1	4153.4 4392.6	8.2834 8.4965	0.27426 0.30020	3658.8			0.24674	3658.0 3850.9		8.1791	
900	0.33780					3851.5			0.27012			8.3925	
1000 1100	0.36687 0.39589	4051.2 4256.6	4638.2 4890.0	8.6974 8.8878	0.32606 0.35188	4050.7 4256.2			0.29342 0.31667	4050.2 4255.7		8.5936 8.7842	
1200	0.39389	4467.9	5147.7	9.0689	0.33166	4467.6			0.33989	4467.2		8.9654	
1300	0.45383	4684.8	5410.9	9.2418	0.40341	4684.5			0.36308	4684.2		9.1384	
1300													
			Pa (223.9				MPa (233		<i>P</i> =		a (242.56		
Sat. 225	0.07995 0.08026	2602.1 2604.8	2801.9 2805.5	6.2558 6.2629	0.06667	2603.2	2803.	2 6.1856	0.05706	2603.0	2802.7	6.1244	
250	0.08705	2663.3	2880.9	6.4107	0.07063	2644.7	2856.	5 6.2893	0.05876	2624.0	2820.7	6.1764	
300	0.08703	2762.2	3009.6	6.6459	0.07003	2750.8			0.05876	2738.8		6.4484	
350	0.10979	2852.5	3127.0	6.8424	0.09056	2844.4			0.07680	2836.0		6.6601	
400	0.12012	2939.8	3240.1	7.0170	0.09038	2933.6			0.08456	2927.2		6.8428	
450	0.13015	3026.2	3351.6	7.1768	0.10789	3021.2			0.09198	3016.1		7.0074	
500	0.13999	3112.8	3462.8	7.3254	0.11620	3108.6			0.09919	3104.5		7.1593	
600	0.15931	3288.5	3686.8	7.5979	0.13245	3285.5			0.11325	3282.5		7.4357	
700	0.17835	3469.3	3915.2	7.8455	0.14841	3467.0			0.12702	3464.7		7.6855	
800	0.19722	3656.2	4149.2	8.0744	0.16420	3654.3			0.14061	3652.5		7.9156	
900	0.21597	3849.4	4389.3	8.2882	0.17988	3847.9			0.15410	3846.4		8.1304	
1000	0.23466	4049.0	4635.6	8.4897	0.19549	4047.7			0.16751	4046.4		8.3324	
1100	0.25330	4254.7	4887.9	8.6804	0.21105	4253.6			0.18087	4252.5		8.5236	
1200	0.27190	4466.3	5146.0	8.8618	0.22658	4465.3			0.19420	4464.4		8.7053	
1300	0.29048	4683.4	5409.5	9.0349	0.24207	4682.6			0.20750	4681.8		8.8786	
					/		3.00						

Appendix 1	897

TABLE	TABLE A-6											
Superl	heated wate	r (Conclu	ıded)									
T	V	и	h	S	v	u	h	S	V	u	h	S
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	$kJ/kg \cdot K$	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K
	P =	15.0 MP	a (342.16	5°C)	P = 1	17.5 MPa	(354.67	°C)	P = 20.0 MPa (365.75°C)			
Sat.	0.010341	2455.7	2610.8	5.3108	0.007932	2390.7	2529.5	5.1435	0.005862	2294.8	2412.1	4.9310
350	0.011481	2520.9	2693.1	5.4438								
400	0.015671	2740.6	2975.7	5.8819	0.012463			5.7211	0.009950	2617.9	2816.9	5.5526
450	0.018477	2880.8	3157.9	6.1434	0.015204		3111.4		0.012721	2807.3	3061.7	5.9043
500 550	0.020828 0.022945	2998.4 3106.2	3310.8 3450.4	6.3480 6.5230	0.017385 0.019305		3276.7 3423.6		0.014793 0.016571	3064.7	3241.2 3396.2	6.1446 6.3390
600	0.022945	3209.3	3583.1	6.6796	0.019303		3561.3		0.018371	3175.3	3539.0	6.5075
650	0.024921	3310.1	3712.1	6.8233	0.021073		3693.8		0.018185	3281.4	3675.3	6.6593
700	0.028621	3409.8	3839.1	6.9573	0.022742		3823.5		0.019093	3385.1	3807.8	6.7991
800	0.020021	3609.3	4091.1	7.2037	0.027405		4079.3		0.023870	3590.1	4067.5	7.0531
900	0.035503	3811.2	4343.7	7.4288	0.030348		4334.6		0.026484		4325.4	7.2829
1000	0.033303	4017.1	4599.2	7.6378	0.0333215		4592.0			4004.3	4584.7	7.4950
1100	0.042062	4227.7	4858.6	7.8339	0.036029		4852.8		0.031504		4847.0	7.6933
1200	0.045279	4443.1	5122.3	8.0192	0.038806		5117.6		0.033952		5112.9	7.8802
1300	0.048469	4663.3	5390.3	8.1952	0.041556		5386.5		0.036371		5382.7	8.0574
		P = 25	.0 MPa			P = 30.0) MPa		P = 35.0 MPa			
375	0.001978	1799.9	1849.4	4.0345	0.001792		1791.9	3 0313	0.001701		1762.4	3.8724
400	0.001978	2428.5	2578.7	5.1400	0.001792		2152.8			1914.9	1988.6	4.2144
425	0.000003	2607.8	2805.0	5.4708	0.002798		2611.8		0.002103		2373.5	4.7751
450	0.007036	2721.2	2950.6	5.6759	0.005233		2821.0		0.003454		2671.0	5.1946
500	0.003170	2887.3	3165.9	5.9643	0.008691		3084.8		0.006933	2755.3	2997.9	5.6331
550	0.012736	3020.8	3339.2	6.1816	0.010175		3279.7		0.008348	2925.8	3218.0	5.9093
600	0.014140	3140.0	3493.5	6.3637	0.011445		3446.8		0.009523	3065.6	3399.0	6.1229
650	0.015430	3251.9	3637.7	6.5243	0.012590		3599.4		0.010565	3190.9	3560.7	6.3030
700	0.016643	3359.9	3776.0	6.6702	0.013654	3334.3	3743.9	6.5599	0.011523	3308.3	3711.6	6.4623
800	0.018922	3570.7	4043.8	6.9322	0.015628	3551.2	4020.0	6.8301	0.013278	3531.6	3996.3	6.7409
900	0.021075	3780.2	4307.1	7.1668	0.017473	3764.6	4288.8	7.0695	0.014904	3749.0	4270.6	6.9853
1000	0.023150	3991.5	4570.2	7.3821	0.019240	3978.6	4555.8	7.2880	0.016450	3965.8	4541.5	7.2069
1100	0.025172	4206.1	4835.4	7.5825	0.020954	4195.2	4823.9	7.4906	0.017942	4184.4	4812.4	7.4118
1200	0.027157	4424.6	5103.5	7.7710	0.022630		5094.2			4406.1	5085.0	7.6034
1300	0.029115	4647.2	5375.1	7.9494	0.024279	4639.2	5367.6	7.8602	0.020827	4631.2	5360.2	7.7841
		P = 40	.0 MPa			P = 50.0) MPa			<i>P</i> = 60	.0 MPa	
375	0.001641	1677.0	1742.6	3.8290	0.001560	1638.6	1716.6	3.7642	0.001503	1609.7	1699.9	3.7149
400	0.001911	1855.0	1931.4	4.1145	0.001731		1874.4		0.001633	1745.2	1843.2	3.9317
425	0.002538	2097.5	2199.0	4.5044	0.002009		2060.7		0.001816	1892.9	2001.8	4.1630
450	0.003692	2364.2	2511.8	4.9449	0.002487	2160.3	2284.7	4.5896	0.002086	2055.1	2180.2	4.4140
500	0.005623	2681.6	2906.5	5.4744	0.003890	2528.1	2722.6	5.1762	0.002952	2393.2	2570.3	4.9356
550	0.006985	2875.1	3154.4	5.7857	0.005118	2769.5	3025.4	5.5563	0.003955	2664.6	2901.9	5.3517
600	0.008089	3026.8	3350.4	6.0170	0.006108		3252.6		0.004833		3156.8	5.6527
650	0.009053	3159.5	3521.6	6.2078	0.006957		3443.5		0.005591	3031.3	3366.8	5.8867
700	0.009930	3282.0	3679.2	6.3740	0.007717		3614.6		0.006265	3175.4	3551.3	6.0814
800	0.011521	3511.8	3972.6	6.6613	0.009073		3925.8		0.007456	3432.6	3880.0	6.4033
900	0.012980	3733.3	4252.5	6.9107	0.010296		4216.8		0.008519	3670.9	4182.1	6.6725
1000	0.014360	3952.9	4527.3	7.1355	0.011441		4499.4		0.009504	3902.0	4472.2	6.9099
1100	0.015686	4173.7	4801.1	7.3425	0.012534		4778.9		0.010439	4130.9	4757.3	7.1255
1200	0.016976	4396.9	5075.9	7.5357	0.013590		5058.1		0.011339		5040.8	7.3248
1300	0.018239	4623.3	5352.8	7.7175	0.014620	4607.5	ეკკგ.5	7.6048	0.012213	4591.8	5324.5	7.5111

