

| PROGRAM         | : | NATIONAL DIPLOMA<br>ENGINEERING: CIVIL   |
|-----------------|---|------------------------------------------|
| <u>SUBJECT</u>  | • | SOIL MECHANICS 2A                        |
| CODE            | : | CEGA211                                  |
| DATE            | : | WINTER SSA EXAMINATION 2019<br>JULY 2019 |
| DURATION        | : | (X-PAPER) 08:00 – 10:00                  |
| <u>WEIGHT</u>   | : | 40 :60                                   |
| FULL MARKS      | : | 70                                       |
| TOTAL MARKS     | : | 70                                       |
| EXAMINER        | : | PROF GC FANOURAKIS                       |
| MODERATOR       | : | MR F THAIMO                              |
| NUMBER OF PAGES | : | 4 PAGES AND 2 ANNEXURES                  |

## **INSTRUCTIONS**

ANSWER ALL THE QUESTIONS.

NON-PROGRAMMABLE SCIENTIFIC CALCULATORS MAY BE USED. <u>THE USE OF</u> <u>ALPHA-NUMERIC CALCULATORS IS PROHIBITED.</u>

#### **QUESTION 1**

Describe (in detail) collapsible soils and list possible options that may be implemented to found on these soils.

[8]

#### **QUESTION 2**

An undisturbed soil sample was taken from one of the compacted layers of a road pavement and sent for laboratory testing.

In the laboratory, the mass of the soil was recorded as 700 g. Thereafter, it was coated with wax and the combined mass of wax and soil was found to be 720 g. The volume of the wax-coated sample was determined, by displacement, as 400 ml.

The sample was then broken open and its moisture content and particle specific gravity (G) were determined as 18 % and 2.7, respectively. The specific gravity of the wax was 0,9. **Working from first principles**, determine the soil's:

Bulk density Dry density Void ratio Degree of saturation

[13]

#### **QUESTION 3**

A saturated soil has a moisture content of 22 % and a dry density of 1400 kg/m<sup>3</sup>. Determine its:

Void ratio Specific gravity Porosity Saturated density

[9]

#### **QUESTION 4**

The following results were recorded in three liquid limit tests.

| Number of taps (N)                                                                                                                                                                     | 16                   | 23           | 35                    |      |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|-----------------------|------|--|--|--|
| Moisture Content (%)                                                                                                                                                                   | 22                   | 19           | 13                    |      |  |  |  |
| 4.1 Determine the liqu                                                                                                                                                                 | id limit of the so   | il.          |                       | (5)  |  |  |  |
| 4.2 If the plasticity lim                                                                                                                                                              | it of this soil is 1 | 0, determine | the plasticity index. | (2)  |  |  |  |
| 4.3 If the <i>in-situ</i> moisture content of the soil is 3 %, determine the liquidity index. Also, state how this soil is expected to behave at that <i>in-situ</i> moisture content. |                      |              |                       |      |  |  |  |
|                                                                                                                                                                                        |                      |              |                       | [11] |  |  |  |

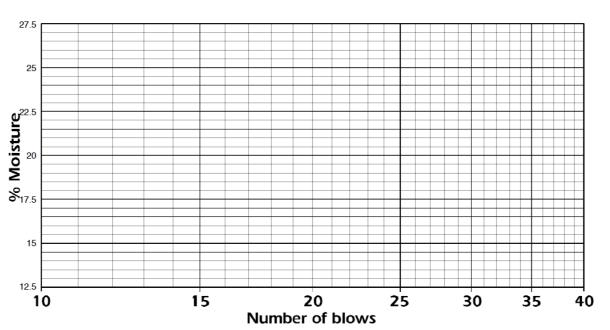
### **QUESTION 5**

Using the chart provided as Annexure B, classify the following two (2) soils according to the Unified Soil Classification System (USCS).

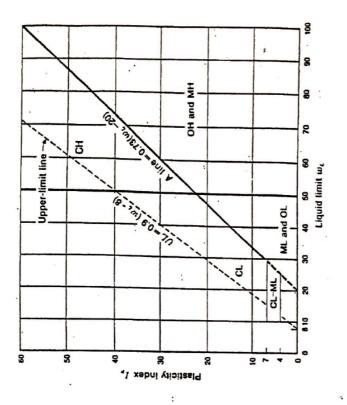
| Soil | Percentage Pass<br>(mm) | ing Sieve Size | Liquid Limit | Plastic Limit |  |  |
|------|-------------------------|----------------|--------------|---------------|--|--|
|      | 4,75 mm                 | 0,075 mm       |              |               |  |  |
| Α    | 20                      | 25             | 29           | 16            |  |  |
| В    | 99                      | 70             | 45           | 20            |  |  |

[8]

### **QUESTION 6**


When describing a soil according to the MCCSSO System, what is the relevance of describing the **Moisture, Consistency and Structure**?

[10]


# **QUESTION 7**

|     | <u>1</u>                                                                                                                                                                                                                                               | <u> OTAL : 70</u> |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|     |                                                                                                                                                                                                                                                        | [11]              |
|     | CBR: 12, 19, 19, 17, 18, 21, 21, 23, 25, 18.                                                                                                                                                                                                           | (4)               |
| 7.2 | The results of a number of CBR tests conducted on a soil are given<br>below. Using these results, determine the design CBR of this material, in<br>accordance with the Asphalt Institute Manual MS-1 Method.                                           |                   |
|     | Determine the number of layers and number of blows per layer required<br>to impart this energy to the soil.                                                                                                                                            | (7)               |
| 7.1 | A laboratory compaction test requires 794 KJ/m3 of energy to be imparted to a soil. The mould to be used has a diameter of 152 mm and a height of 125 mm. A hammer with a mass of 2,495 kg, which falls through a distance of 304,8 mm, is to be used. |                   |

# SOIL MECHANICS 2A CEGA211 (SSA EXAM)



## ANNEXURE A



.

Unified classification system

| Classification criteria for<br>coarse-grained solls | C_= = D_m/D_n > 4<br>C_= 1 < D <sup>1</sup> m/D_n × D_n < 3                                             | Not meating all gradation<br>. requirements for GW                    | Above A line<br>with 4 < 1, <7<br>are borderline | cases requiring<br>use of dual<br>symbols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C, - D_dD, - 5<br>Cc - 1 < D'_D, × D_ < 3                | Not meeting all gradation<br>requirements for SW                                                          | Limits plotting<br>in hatched zone<br>with 4 ± 4, < 7<br>are barderline<br>use of dual<br>symbola |                                                 | Determine percentages of and and<br>gravel from grain-diae curve.<br>Depending on percentages of<br>fines (fraction spueller than<br>200 alove aize), coarse-grained<br>colls are classified at follows:<br>Beas than 5%-OW, GC, SM, SC,<br>More than 12%-OM, GC, SM, SC<br>More than 12%-OM, GC, SM, SC<br>requiring dual symbols |                                                                                                            | •                                                          |                                                                                         |                                                  |                                                                 |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------|
| Classificatio<br>coarse-gri                         |                                                                                                         |                                                                       | Atterberg limita<br>below A line<br>or I, < 4    | Atterberg limits<br>above A line<br>with I. > 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                                                                                                           | Atterberg limita<br>below A line<br>or 1, < 4                                                     | Atterberg limits<br>above A line<br>with I, > 7 | <ol> <li>Detarmine percentages of and and<br/>Ervel from grain-disc curva.</li> <li>Depending on percentages of<br/>finas (fraction upuller than<br/>200 atom size), course grained<br/>solid are clarified as follows:</li> </ol>                                                                                                 | Leas than 6%                                                                                               |                                                            |                                                                                         |                                                  |                                                                 |
| Typical names                                       | Well-graded gravels, gravel-<br>aand mixtures, little or no<br>fines                                    | Poorly graded gravels,<br>gravel-sand mixtures,<br>little or no fines | Silty gravela, gravel-aand-<br>allt mixtures     | Clayey gravele, gravel-sand.<br>elay mixtures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Well-graded sands, gravelly<br>sands, little or no fines | Poorly graded sands, gravelly<br>sands, little or no fines                                                | Silty aands, aand-ailt<br>mixtures                                                                | Clayey aanda, aand clay<br>mixturea             | Inorganic ailts and very<br>fine aanda, rock flour,<br>ailty or clayey fine<br>aanda, or clayey tilta<br>with aiight plasticity                                                                                                                                                                                                    | Inorganic claya of low to<br>medium plasticity, gravelly<br>claya, aandy claya, ailty<br>claya, tean claya | Organic silts and organic<br>silty clays of low plasticity | Inorginic allts, mkneous or<br>diatomaceous fine sandy or<br>silty solls, elastic silts | Inorganic clays of high<br>plasticity, fat clays | Organic clays of medium<br>to high plasticity.<br>organic alita |
| Group                                               | GW                                                                                                      | GP                                                                    | GM                                               | gc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MS                                                       | sp                                                                                                        | , MS                                                                                              | S                                               | ĸĽ                                                                                                                                                                                                                                                                                                                                 | 5                                                                                                          | OL                                                         | HW                                                                                      | . ¥                                              | 110                                                             |
|                                                     | tie or no<br>its or no<br>(south                                                                        | Clean annda Gravels with fines Clean                                  |                                                  | and the shart an |                                                          | . (01 >                                                                                                   | (08 < 31mil biupil)                                                                               |                                                 |                                                                                                                                                                                                                                                                                                                                    |                                                                                                            |                                                            |                                                                                         |                                                  |                                                                 |
| Major                                               | Oravels<br>(more then half of tears traction)<br>is larger than we, 4 size)<br>is larger than we, 7 see |                                                                       |                                                  | PTOM)<br>(A) A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | action -                                                 | Shraf No. 4 sire) is smaller than No. 4 sires |                                                                                                   | צווכי דעק בודאי .                               |                                                                                                                                                                                                                                                                                                                                    |                                                                                                            | avais ana still                                            |                                                                                         |                                                  |                                                                 |
|                                                     | (~~52                                                                                                   | et) (005                                                              | .eN nada                                         | slice berie<br>egnal al lai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Contro-Eri                                               | lad nads (                                                                                                | New)                                                                                              |                                                 | (~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                             | tt chan No. 200                                                                                            | alioa be                                                   | lairesem 20                                                                             | Itad nas                                         | (1 0.000)                                                       |

ANNEXURE B

3