

PROGRAM : NATIONAL DIPLOMA

ENGINEERING: INDUSTRIAL

SUBJECT : **QUALITY ASSURANCE 2**

<u>CODE</u> : **BQA 2111**

<u>DATE</u> : WINTER SSA EXAMINATION

19 JULY 2019

<u>DURATION</u> : (SESSION 1) 8:00 – 11:00

<u>WEIGHT</u> : 40 : 60

TOTAL MARKS : 100

ASSESSOR : Ms. R MOUCHOU

MODERATOR : Dr. G MUYENGWA

NUMBER OF PAGES : 4 PAGES + 2 ANNEXURES

REQUIREMENTS:

• 3 SHEETS GRAPH PAPER PER STUDENT

INSTRUCTIONS TO STUDENTS:

- ANSWER ALL QUESTIONS.
- A STUDENT IS EXPECTED TO MAKE REASONABLE ASSUMPTIONS FOR DATA NOT SUPPLIED.
- NUMBER YOUR QUESTIONS CLEARLY AND UNDERLINE THE FINAL ANSWER.
- ANSWERS WITHOUT UNITS WILL BE IGNORED.

QUESTION 1

Under Total Quality Management what is the role of:

4.1 Leadership; (8)

4.2 Employees. (8)

[<u>16</u>]

Question 2

Under Six Sigma Describe DMAIC project methodology

[10]

QUESTION 3

- 1.1 Prepare a scatter diagram for the data set given in Table Q1. (6)
- 1.2 Determine the:
- 1.2.1 coefficient of correlation; (4)
- 1.2.2 equation of the line; (4)
- 1.3 Express in words the apparent relationship between the two variables. (4)

Table Q1

Age	24	30	22	25	33	27	36	58	37	47	54	28	42	55
Absenteeism	6	5	7	6	4	5	4	1	3	2	2	5	3	1
rate														

[<u>18</u>]

Question 4

- 1. Below are the readings obtained in the production line by a motion and time study analyst who took 6 readings per cycle each day for 10 days.
- a) Construct a tally sheet

(2 marks)

b) Using the data below, construct a histogram (14 marks)

[16]

Day			Operatio	<u>n time</u>			
1	12	9	17	18	6	16	
2	10	19	13	15	19	6	
3	7	15	14	13	10	14	
4	5	14	11	15	15	16	
5	11	15	12	14	13	14	
6	9	16	15	16	15	15	
7	14	5	16	13	12	16	
8	13	14	13	16	14	15	
9	6	13	16	15	16	3	
10	12	16	15	16	13	15	

QUESTION 5

Random samples each with a sample size of six, are periodically taken from a production line that manufactures one-half-volt batteries. The sampled batteries are tested on a voltmeter. The production line has just been modified, and a new quality control plan must be designed. For that purpose, 10 random samples (of 6 each) have been taken over a suitable period of time. The test results are as follows:

Sample	Tested Voltages							
Number	V_1	V_2	V_3	V_4	V_5	V_6		
1	0.498	0.492	0.510	0.505	0.504	0.487		
2	0.482	0.491	0.502	0.481	0.496	0.492		
3	0.501	0.512	0.503	0.499	0.498	0.511		
4	0.498	0.486	0.502	0.503	0.510	0.501		
5	0.500	0.507	0.509	0.498	0.512	0.518		
6	0.476	0.492	0.496	0.521	0.505	0.490		
7	0.511	0.522	0.513	0.518	0.520	0.516		
8	0.488	0.512	0.501	0.498	0.492	0.498		
9	0.482	0.490	0.510	0.500	0.495	0.482		
10	0.505	0.496	0.498	0.490	0.485	0.499		

3.1	Draw the mean and range charts for the data.	(16)
-----	--	------

3.2 Discuss what should be done next. (4)

[20]

QUESTION 6

A random sample of insurance claims is selected from a lot of 12 that has 3 nonconforming units. Using the hypergeometric distribution determine the probability that the sample will contain exactly:

5.1	zero nonconforming units;	(3)
5.2	one nonconforming unit;	(3)
5.3	two nonconforming units;	(3)
5.4	three nonconforming units;	(3)

5.5	four nonconforming units.	(3)
5.6	Draw the hypergeometric distribution based on the data given.	(5)
		[<u>20</u>]

ANNEXURE A

FORMULA SHEET

1. Measures of Central Tendency

$$ar{X} = rac{\sum\limits_{i=1}^{n} X_i}{n}; \qquad ar{X} = rac{\sum\limits_{i=1}^{n} f_i X_i}{n}; \qquad ar{X}_w = rac{\sum\limits_{i=1}^{n} w_i \, ar{X}_i}{\sum\limits_{i=1}^{n} w_i} \ Md = L_m + \left(rac{n}{2} - c f_m \over f_m
ight) i;$$

2. Measures of Dispersion

$$R = X_h - X_l; s = \sqrt{\frac{\sum_{i=1}^{n} \left(X_i - \bar{X}\right)^2}{n-1}}; s = \sqrt{\frac{n\sum_{i=1}^{n} X_i^2 - \left(\sum_{i=1}^{n} X_i\right)^2}{n(n-1)}}$$

$$Z = \frac{X_i - \mu}{\sigma}$$

3. Scatter Diagram

$$m = \frac{\sum xy - \left[\left(\sum x\right)\left(\sum y\right)/n\right]}{\sum x^2 - \left[\left(\sum x\right)^2/n\right]}; \qquad a = \sum \frac{y}{n} - m\left(\sum \frac{x}{n}\right); \qquad y = a + mx;$$

$$r = \frac{\sum xy - [(\sum x)(\sum y)/n}{(\sum x^2 - [(\sum x)^2/n])(\sum y^2 - [(\sum y)^2/n])}.$$

4. Control Charts – variables

Trial Control Limits

$$\bar{X} = \frac{\sum_{i=1}^{g} \bar{X}_{i}}{g}; \qquad \bar{R} = \frac{\sum_{i=1}^{g} R_{i}}{g};$$

$$UCL_{\bar{X}} = \bar{X} + 3\sigma_{\bar{X}};$$

$$UCL_{R} = \bar{R} + 3\sigma_{R};$$

$$LCL_{\bar{X}} = \bar{X} - 3\sigma_{\bar{X}};$$

$$UCL_{R} = \bar{R} - 3\sigma_{R};$$

$$UCL_{\bar{X}} = \bar{X} + A_2 R;$$
 $UCL_R = D_4 \bar{R};$ $LCL_{\bar{X}} = \bar{X} - A_2 \bar{R};$ $LCL_R = D_3 \bar{R}.$

Revised Control Limits

$$\bar{\bar{X}}_{new} = \frac{\sum \bar{X} - \bar{X}_d}{g - g_d}; \qquad \bar{R}_{new} = \frac{\sum R - R_d}{g - g_d};$$

$$\bar{X}_{0} = \bar{X}_{new};$$
 $R_{0} = \bar{R}_{new};$ $\sigma_{0} = \frac{R_{0}}{d_{2}}$

$$LCL_{\bar{X}} = \bar{X_0} + A\sigma_0;$$
 $LCL_{\bar{X}} = \bar{X_0} - A\sigma_0;$

$$UCL_R = D_2\sigma_0;$$
 $LCL_R = D_1\sigma_0$

•

5. Sample Standard Deviation Control Chart

Trial Control Limits

$$\bar{s} = \frac{\sum_{i=1}^{g} \bar{s}}{g};$$
 $\bar{X} = \frac{\sum_{i=1}^{g} \bar{X}_{i}}{g};$

$$UCL_{\bar{x}} = \bar{X} + A_3 \bar{s};$$
 $UCL_s = B_4 \bar{s};$

$$UCL \bar{X} = \bar{X} - A_3 \bar{s};$$

$$LCL_s = B_3 \bar{s}$$

Revised Control Limits

$$\bar{X}_{0} = \bar{X}_{new} = \frac{\sum \bar{X} - \bar{X}_{d}}{g - g_{d}}$$

$$s_0 = \bar{s}_{new} = \frac{\sum s - s_d}{g - g_d};$$
 $\sigma_0 = \frac{s_0}{c_A}$

$$UCL_{\bar{X}} = \bar{X}_0 + A\sigma_0;$$
 $UCL_s = B_6\sigma_0$
 $LCL_{\bar{X}} = \bar{X}_0 - A\sigma_0;$ $LCL_s = B_5\sigma_0$

6. Process Capability

$$\bar{R} = \frac{\sum R}{g};$$

$$\hat{\sigma} = \frac{\bar{R}}{c_4}; \qquad \hat{\sigma} = \frac{\bar{s}}{d_2}$$

$$\hat{\sigma} = \frac{s}{d_2}$$

$$\sigma_0 = \frac{\bar{R}}{d_2};$$

$$\bar{s} = \frac{\sum s}{g}$$

$$\bar{s} = \frac{\sum s}{g}; \qquad \sigma_0 = \frac{s}{c_4};$$

$$C_{p} = \frac{USL - LSL}{6\sigma_{0}};$$

$$C_r = \frac{6\sigma_0}{USL - LSL}$$

$$C_{pk} = \frac{Min\{\left(USL - \bar{X}\right)or\left(\bar{X} - LSL\right)}{3\sigma}$$

7. Discrete Probability Distributions **Hypergeometric Probability Distribution**

$$P(d) = \frac{C_d^D C_{c-d}^{N-D}}{C_n^N};$$

$$\mu = \frac{nD}{N}$$

$$P(d) = \frac{C_d^D C_{c-d}^{N-D}}{C_n^N}; \qquad \mu = \frac{nD}{N}; \qquad \sigma = \sqrt{\frac{nD}{N} \left(1 - \frac{D}{N}\right) (N-n)}$$

Binomial Probability Distribution

$$(p+q)^{2} = p^{n} + np^{n-1}q + \frac{n(n-1)}{2}p^{n-2}q^{2} + \dots + q^{n}$$

$$P(d) = \frac{n!}{d!(n-d)!} p_0^d q_0^{n-d}$$

$$\mu = np_0;$$

$$\sigma = \sqrt{np_0(1-p_0)}$$

Poisson Probability Distribution

$$P(c) = \frac{(np_0)^c}{c!} e^{-np_0}; \qquad \mu = np_0; \qquad \sigma = \sqrt{np_0}$$

8. Control charts – Attributes

$$n = p(1-p)\left(\frac{\frac{Z_{\alpha}}{2}}{E}\right)^{2}$$

.

p - Chart: - Trial Control Limits

$$UCL = p + 3\sqrt{\frac{p(1-p)}{n}}; \qquad LCL = p - 3\sqrt{\frac{p(1-p)}{n}}; \qquad p = \frac{\sum np}{\sum n}$$

.

p – Chart :– Revised Control Limits

$$\begin{array}{lll} \bar{p}_{new} & = & \displaystyle \frac{\sum np - np_d}{\sum n - n_d}; & p_0 & = \bar{p}_{new} \end{array}$$

$$UCL = p_0 + 3\sqrt{\frac{p_0(1-p_0)}{n}};$$
 $LCL = p_0 - 3\sqrt{\frac{p_0(1-p_0)}{n}}$

.

c - chart : - Trial Control Limits

$$UCL = c + 3\sqrt{c}; \qquad LCL = c - 3\sqrt{c}; \qquad c = \frac{\sum c}{g}$$

.

c- chart : - Revised Control Limits

$$\frac{1}{c_{new}} = \frac{\sum c - c_d}{g - g_d}; \quad UCL = c_0 + 3\sqrt{c_0}; \quad LCL = c_0 - 3\sqrt{c_0}$$

. u – chart

$$u = \frac{c}{n};$$

$$\bar{u} = \frac{\sum c}{\sum n}$$

$$UCL = \bar{u} + 3\sqrt{\frac{u}{n}};$$

$$\bar{u} = \frac{\sum c}{\sum n}$$

$$LCL = \bar{u} - 3\sqrt{\frac{\bar{u}}{n}}$$

ANNEXURE B