

PROGRAM : BACHELOR OF ENGINEERING

TECHNOLOGY: CIVIL

BASIC SCIENCE (APPLIED

SUBJECT : MECHANICS) 1A

CODE : APMCIA1

DATE : SUPPLEMENTARY EXAM

19 JULY 2019

DURATION : (SESSION 1) 08:00 - 10:30

WEIGHT : 40 : 60

TOTAL MARKS : 70

ASSESSOR : Mr SD Ngidi

MODERATOR : Miss N Reynecke

NUMBER OF PAGES : 6 PAGES

INSTRUCTIONS : ONLY ONE POCKET CALCULATOR PER CANDIDATE

MAY BE USED.

REQUIREMENTS : 2 ANSWER BOOKLETS

INSTRUCTIONS TO STUDENTS

PLEASE ANSWER ALL QUESTIONS.
SHOW ALL THE STEPS FOR CALCULATIONS CLEARLY.

QUESTION 1 [10]

Calculate the magnitude and direction of reactions at A and C of the truss in the following figure.

QUESTION 2 [10]

Determine the forces in cables AB and AC necessary to support the weight 500 N.

QUESTION 3 [10]

Determine the force in each member of the truss in Figure Q3. Indicate whether the member is in Tension or Compression.

QUESTION 4 [10]

A Reavaya bus starts from rest and accelerates uniformly over a distance of 500 m, reaching a speed of 100 km/hr. This speed is maintained until the bus brakes and stops 15 km from the starting point. If the total time taken is 11 minutes:

- (a) Draw a velocity time graph (3)
- (b) Find the magnitude of the deceleration and the distance travelled at full speed. (7)

QUESTION 5 [15]

Determine the centre of gravity of the lamina shown in Figure Q5. (Use point B as a reference point.)

QUESTION 6 [15]

Find the largest force P for which A in the figure will not slide on B.

--00O00--

Formula sheet

Centroids of regular areas

area = $b \times d$ $\overline{x} = \frac{b}{2}$ and $\overline{y} = \frac{d}{2}$

90° triangle

area = $\frac{b}{2} \times h$ $\overline{x} = \frac{b}{3}$ and $\overline{y} = \frac{h}{3}$ (from 90° corner)

Circle

$$area = \frac{\pi \cdot d^2}{4}$$

$$\overline{x} = \frac{d}{2} \text{ and } \overline{y} = \frac{d}{2}$$

Semi-circle

area =
$$\frac{\pi \cdot d^2}{8}$$

 $\bar{x} = \frac{d}{2}$ and $\bar{y} = \frac{4 \cdot r}{3 \cdot \pi}$

Motion formulae

$$v = u \pm a \cdot t$$

$$v^{2} = u^{2} \pm 2 \cdot a \cdot s$$

$$s = u \cdot t \pm \frac{1}{2} \cdot a \cdot t^{2}$$

Basic equations

$$average \ velocity = \frac{initial \ velocity + final \ velocity}{2}$$

$$\frac{-}{v} = \frac{u+v}{2}$$

$$\begin{aligned} \text{displacement} &= \text{average velocity} \times \text{time} \\ s &= \overset{-}{v} \times t \end{aligned}$$

acceleration =
$$\frac{\text{change in velocity}}{\text{time}}$$

= $\frac{\Delta v}{t}$