

PROGRAM : BACCALAUREUS TECHNOLOGIAE

CHEMICAL ENGINEERING

SUBJECT : **REACTOR TECHNOLOGY IV**

<u>CODE</u> : WER 411

<u>DATE</u> : SUMMER EXAMINATION

NOVEMBER 2019

<u>DURATION</u> : (Y-PAPER) 14:00 - 17:00

WEIGHT : 40: 60

TOTAL MARKS : 160

EXAMINER : Prof. M BELAID & Mr. O AYELERU

MODERATOR : Prof. RK MBAYA 2221

NUMBER OF PAGES : 3 PAGES

INSTRUCTIONS : ANSWER ALL QUESTIONS

NON PROGRAMMABLE CALCULATORS PERMITED

(ONE PER STUDENT)

REQUIREMENTS : 2 SHEETS OF GRAPH PAPER

REACTOR TECHNOLOGY WER 411

Question One [24 Marks]

Benzyl amide is the product obtained from the liquid-phase reaction of ammonia and benzoyl chloride:

$$C_6H_5COCI + 2NH_3 \longrightarrow C_6H_5CONH_2 + NH_4CI$$

- 2. Taking benzoyl chloride as your basis of calculation set up a stoichiometric table for a batch system.
- 2.2 If the initial mixture consisted solely of ammonia at a concentration of 6 g mol/L and benzoyl chloride at a concentration of 2 g mol/L, calculate the concentrations of ammonia and benzyl amide when the conversion is 25 %.

(12)

[24]

Question Two [30 Marks]

The irreversible gas phase non-elementary reaction:

$$A + 2B \rightarrow C$$

is to be carried out isothermally in a constant pressure batch reactor. The feed temperature is 227 °C and the pressure is 1013 kPa. The feed composition is 33.3 % A and 66.7 % B. Laboratory data taken under identical conditions are as follows (note that at X = 0, $-r_A = 0.00001$):

-r _A (mol/dm ³ .s) X 10 ³	0.01	0.005	0.002	0.001
Conversion	0.0	0.2	0.4	0.6

- 2.1. Estimate the volume of a plug flow reactor required to achieve 30 % conversion of A for an entering volumetric flow rate of 2 m³/min
- 2.2. Estimate the volume of a CSTR to take the effluent from the plug flow reactor above and achieve a 50 % total conversion (based on species A fed to the PFR). (5)
- 2.3. What is the total volume of the two reactors? (5)
- 2.4. What is the volume of a single PFR required to achieve 60 % conversion? (5)
- What is the volume of a single CSTR required to achieve 50 % conversion? 2.5.
- What is the volume of a second CSTR which may be used to raise the 2.6. conversion from 50 % to 60 %? (5)

[30]

 $R = 0.082 \text{ dm}^3$. atm/mol. K

REACTOR TECHNOLOGY WER 411

Question Three [22 Marks]

The following reaction takes place in a tubular reactor consisting of 60 parallel tubes (12.2 m long with a 1.9 cm inside diameter.

$$A \longrightarrow B$$

Bench scale experiments have given the reaction rate constant for this first order reaction as 0.00152 s^{-1} at 94 °C and 0.0740 s^{-1} at 150 °C.

3.1 Find an expression of k in function of T

(12)

3.2 At what temperature should the reactor be operated to achieve a conversion of 80 %?

(10)

Feed rate: 226.8 kg/h

Operating pressure: 790.6 kPa (abs) Molecular weight of A= 73 kg / kmol

Reverse reaction is insignificant at these conditions

[22]

Question Four [24 Marks]

The irreversible isomerization

$$\mathbf{A} \rightarrow \mathbf{B}$$

was carried out in a batch reactor and the following concentration- time data were obtained:

T(min)	0	3	5	8	10	12	15	17.5
C_A	4.0	2.89	2.25	1.45	1.0	0.65	.25	0.07
(Mol/dm^3)								

4.1 Determine the reaction order, α , and the specific reaction rate, k_A . (16)

4.2 If you were to repeat this experiment to determine the kinetics, what would you do differently? Would you run at a higher, lower, or the same temperature? Take different data points? Explain. (8)

[24]

REACTOR TECHNOLOGY WER 411

A.1 Useful Integrals in Reactor Design

$$\int_0^x \frac{dx}{1-x} = \ln \frac{1}{1-x}$$
 (A-1)

$$\int_0^x \frac{dx}{(1-x)^2} = \frac{x}{1-x} \tag{A-2}$$

$$\int_0^x \frac{dx}{1+\varepsilon x} = \frac{1}{\varepsilon} \ln(1+\varepsilon x) \tag{A-3}$$

$$\int_{0}^{x} \frac{dx}{1+\varepsilon x} = \frac{1}{\varepsilon} \ln(1+\varepsilon x)$$

$$\int_{0}^{x} \frac{1+\varepsilon x}{1-x} dx = (1+\varepsilon) \ln \frac{1}{1-x} - \varepsilon x$$
(A-4)

$$\int_0^x \frac{1+\varepsilon x}{(1-x)^2} dx = \frac{(1-\varepsilon)x}{1-x} - \varepsilon \ln \frac{1}{1-x}$$
 (A-5)

$$\int_0^x \frac{(1+\varepsilon x)^2}{(1-x)^2} dx = 2\varepsilon (1+\varepsilon) \ln(1-x) + \varepsilon^2 x + \frac{(1+\varepsilon)^2 x}{1-x}$$
 (A-6)

$$\int_0^x \frac{dx}{(1-x)(\Theta_B - x)} = \frac{1}{\Theta_B - 1} \ln \frac{\Theta_B - x}{\Theta_B (1-x)} \qquad \Theta_B \neq 1$$
 (A-7)

$$\int_0^x \frac{dx}{ax^2 + bx + c} = \frac{-2}{2ax + b} + \frac{2}{b} \quad \text{for } b^2 = 4ac$$
 (A-8)

$$\int_0^x \frac{dx}{ax^2 + bx + c} = \frac{1}{a(p-q)} \ln \left(\frac{q}{p} \cdot \frac{x-p}{x-q} \right) \quad \text{for } b^2 > 4ac \quad (A-9)$$

$$\int_0^W (1 - \alpha W)^{1/2} dW = \frac{2}{3\alpha} \left[1 - (1 - \alpha W)^{3/2} \right]$$
 (A-10)

				TABLE A-1		
x,	!	y_i	Δх	Δу	$\frac{\Delta y}{\Delta x}$	dy dx
x ₁	` .	<i>y</i> ₁				$\left(\frac{dy}{dx}\right)_1$
			x_2-x_1	$y_2 - y_1$	$\left(\frac{\Delta y}{\Delta x}\right)_2$	
<i>x</i> ₂	!	y 2				$\left(\frac{dy}{dx}\right)_2$
i			x_3-x_2	y_3-y_2	$\begin{pmatrix} \underline{\Delta y} \\ \underline{\Delta x} \end{pmatrix}_3$	
, x ₃	3	<i>y</i> ₃	·			$\left(\frac{dy}{dx}\right)_3$
			$x_4 - x_3$	$y_4 - y_3$	$\left(\frac{\Delta y}{\Delta x}\right)_4$	
x ₂		y 4				$\left(\frac{dy}{dx}\right)_4$
			$x_5 - x_4$	$y_5 - y_4$	$\left(\frac{\Delta y}{\Delta x}\right)_{5}$	
x.	5	Y 5		etc.		

Ideal Gas Constant

$$R = \frac{8.314 \text{ kPa} \cdot \text{dm}^3}{\text{mol} \cdot \text{K}}$$

$$R = \frac{0.73 \text{ ft}^3 \cdot \text{atm}}{\text{lb mol} \cdot \text{°R}}$$

$$R = \frac{8.3144 \text{ J}}{\text{mol} \cdot \text{K}}$$

$$R = \frac{8.3144 \text{ J}}{\text{mol} \cdot \text{K}}$$

$$R = \frac{8.3144 \text{ J}}{\text{mol} \cdot \text{K}}$$

$$R = \frac{1.987 \text{ cal}}{\text{mol} \cdot \text{K}}$$

$$R = \frac{1.987 \text{ cal}}{\text{mol} \cdot \text{K}}$$