$\frac{\text { UNIVERSITY }}{\text { JOHANNESBURG }}$

PROGRAM	: BACCALAUREUS TECHNOLOGIAE CHEMICAL ENGINEERING	
SUBJECT	: REACTOR TECHNOLOGY IV	
CODE	WER 411	
DATE	: SUMMER EXAMINATION NOVEMBER 2019	
DURATION	: (Y-PAPER) 14:00-17:00	
WEIGHT	: 40: 60	
TOTAL MARKS	: 160	
EXAMINER	Prof. M BELAID \& Mr. O AYELERU	
MODERATOR	Prof. RK MBAYA	2221
NUMBER OF PAGES	: 3 PAGES	

\qquad

INSTRUCTIONS	$:$
	ANSWER ALL QUESTIONS
	NON PROGRAMMABLE CALCULATORS PERMITED
	(ONE PER STUDENT)
REQUIREMENTS $:$	

REACTOR TECHNOLOGY WER 411

Question One [24 Marks]

Benzyl amide is the product obtained from the liquid-phase reaction of ammonia and benzoyl chloride:

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}+2 \mathrm{NH}_{3} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CONH}_{2}+\mathrm{NH}_{4} \mathrm{Cl}
$$

2. Taking benzoyl chloride as your basis of calculation set up a stoichiometric table for a batch system.
2.2 If the initial mixture consisted solely of ammonia at a concentration of $6 \mathrm{~g} \mathrm{~mol} / \mathrm{L}$ and benzoyl chloride at a concentration of $2 \mathrm{~g} \mathrm{~mol} / \mathrm{L}$, calculate the concentrations of ammonia and benzyl amide when the conversion is 25%.

Question Two [30 Marks]

The irreversible gas phase non-elementary reaction:

$$
A+2 B \rightarrow C
$$

is to be carried out isothermally in a constant pressure batch reactor. The feed temperature is $227^{\circ} \mathrm{C}$ and the pressure is 1013 kPa . The feed composition is 33.3% A and 66.7 \% B. Laboratory data taken under identical conditions are as follows (note that at $\mathrm{X}=0,-\mathrm{r}_{\mathrm{A}}=0.00001$):

$-\mathrm{r}_{\mathrm{A}}\left(\mathrm{mol} / \mathrm{dm}^{3} . \mathrm{s}\right) \mathrm{X} \mathrm{10}$	0.01	0.005	0.002	0.001
Conversion	0.0	0.2	0.4	0.6

2.1. Estimate the volume of a plug flow reactor required to achieve 30%
conversion of A for an entering volumetric flow rate of $2 \mathrm{~m}^{3} / \mathrm{min}$
2.2. Estimate the volume of a CSTR to take the effluent from the plug flow reactor above and achieve a 50% total conversion (based on species A fed to the PFR).
2.3. What is the total volume of the two reactors?
2.4. What is the volume of a single PFR required to achieve 60% conversion?
2.5. What is the volume of a single CSTR required to achieve 50% conversion?
2.6. What is the volume of a second CSTR which may be used to raise the conversion from 50% to 60% ?
$\mathrm{R}=0.082 \mathrm{dm}^{3} . \mathrm{atm} / \mathrm{mol} . \mathrm{K}$

REACTOR TECHNOLOGY WER 411

Question Three [22 Marks]

The following reaction takes place in a tubular reactor consisting of 60 parallel tubes (12.2 m long with a 1.9 cm inside diameter.

$\mathrm{A} \longrightarrow \mathbf{B}$

Bench scale experiments have given the reaction rate constant for this first order reaction as $0.00152 \mathrm{~s}^{-1}$ at $94{ }^{\circ} \mathrm{C}$ and $0.0740 \mathrm{~s}^{-1}$ at $150{ }^{\circ} \mathrm{C}$.

3.1 Find an expression of k in function of T

3.2 At what temperature should the reactor be operated to achieve a conversion of 80% ?

Feed rate: $226.8 \mathrm{~kg} / \mathrm{h}$
Operating pressure: 790.6 kPa (abs)
Molecular weight of $\mathrm{A}=73 \mathrm{~kg} / \mathrm{kmol}$
Reverse reaction is insignificant at these conditions

Question Four [24 Marks]

The irreversible isomerization

$$
\mathbf{A} \rightarrow \mathbf{B}
$$

was carried out in a batch reactor and the following concentration- time data were obtained:

$\mathrm{T}(\mathrm{min})$	0	3	5	8	10	12	15	17.5
C_{A} $\left(\mathrm{Mol} / \mathrm{dm}^{3}\right)$	4.0	2.89	2.25	1.45	1.0	0.65	.25	0.07

4.1 Determine the reaction order, α, and the specific reaction rate, k_{A}.
4.2 If you were to repeat this experiment to determine the kinetics, what would you do differently? Would you run at a higher, lower, or the same temperature? Take different data points? Explain.

REACTOR TECHNOLOGY WER 411

A. 1 Useful Integrals in Reactor Design

$$
\begin{align*}
& \int_{0}^{x} \frac{d x}{1-x}=\ln \frac{1}{1-x} \tag{A-1}\\
& \int_{0}^{x} \frac{d x}{(1-x)^{2}}=\frac{x}{1-x} \tag{A-2}\\
& \int_{0}^{x} \frac{d x}{1+\varepsilon x}=\frac{1}{\varepsilon} \ln (1+\varepsilon x) \tag{A-3}\\
& \int_{0}^{x} \frac{1+\varepsilon x}{1-x} d x=(1+\varepsilon) \ln \frac{1}{1-x}-\varepsilon x \tag{A-4}\\
& \int_{0}^{x} \frac{1+\varepsilon x}{(1-x)^{2}} d x=\frac{(1-\varepsilon) x}{1-x}-\varepsilon \ln \frac{1}{1-x} \tag{A-5}\\
& \int_{0}^{x} \frac{(1+\varepsilon x)^{2}}{(1-x)^{2}} d x=2 \varepsilon(1+\varepsilon) \ln (1-x)+\varepsilon^{2} x+\frac{(1+\varepsilon)^{2} x}{1-x} \tag{A-6}\\
& \int_{0}^{x} \frac{d x}{(1-x)\left(\Theta_{\mathrm{B}}-x\right)}=\frac{1}{\Theta_{\mathrm{B}}-1} \ln \frac{\Theta_{\mathrm{B}}-x}{\Theta_{\mathrm{B}}(1-x)} \quad \Theta_{\mathrm{B}} \neq 1 \tag{A-7}\\
& \int_{0}^{x} \frac{d x}{a x^{2}+b x+c}=\frac{-2}{2 a x+b}+\frac{2}{b} \quad \text { for } b^{2}=4 a c \tag{A-8}\\
& \int_{0}^{x} \frac{d x}{a x^{2}+b x+c}=\frac{1}{a(p-q)} \ln \left(\frac{q}{p} \cdot \frac{x-p}{x-q}\right) \quad \text { for } b^{2}>4 a c \tag{A-9}\\
& \int_{0}^{W}(1-\alpha W)^{1 / 2} d W \stackrel{2}{=} \frac{2}{3 \alpha}\left[1-(1-\alpha W)^{3 / 2}\right] \tag{A-10}\\
& \text { Table A-1 } \\
& 4 \text { : } x_{2} \quad y_{2} \\
& x_{3}-x_{2} \quad y_{3}-y_{2} \quad\left(\frac{\Delta y}{\Delta x}\right)_{3} \\
& x_{4}-x_{3} \quad y_{4}-y_{3} \quad\left(\frac{\Delta y}{\Delta x}\right)_{4} \tag{dy}\\
& \begin{array}{ll}
x_{4} & y_{4}
\end{array} \tag{dy}\\
& x_{5}-x_{4} \quad y_{5}-y_{4} \quad\left(\frac{\Delta y}{\Delta x}\right)_{5}
\end{align*}
$$

Ideal Gas Constant

$$
\begin{array}{ll}
R=\frac{8.314 \mathrm{kPa} \cdot \mathrm{dm}^{3}}{\mathrm{~mol} \cdot \mathrm{~K}} & R=\frac{1.987 \mathrm{Btu}}{\mathrm{lb} \mathrm{~mol} \cdot{ }^{\circ} \mathrm{R}} \\
R=\frac{0.73 \mathrm{ft}^{3} \cdot \mathrm{~atm}}{\mathrm{lb} \mathrm{~mol} \cdot{ }^{\circ} \mathrm{R}} & R=\frac{8.3144 \mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} \\
R=0.082 \frac{\mathrm{dm}^{3} \cdot \mathrm{~atm}}{\mathrm{~mol} \mathrm{~K}^{-}}=\frac{0.082 \mathrm{~m}^{3} \cdot \mathrm{~atm}}{\mathrm{~mol} \mathrm{~K}^{-}} & R=\frac{1.987 \mathrm{cal}}{\mathrm{~mol} \mathrm{~K}}
\end{array}
$$

