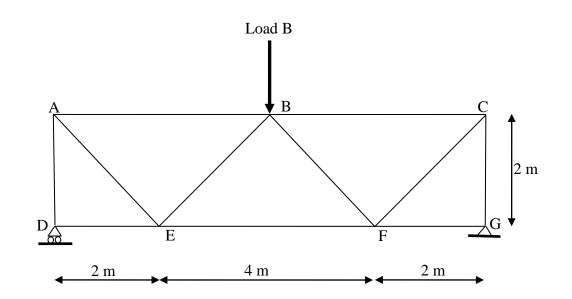


PROGRAM	:	NATIONAL DIPLOMA ENGINEERING: CIVIL
<u>SUBJECT</u>	:	STRUCTURAL STEEL AND TIMBER DESIGN III
CODE	:	TSS31-1
DATE	:	SUMMER EXAMINATION
		11 NOVEMBER 2019
DURATION	:	12:30 - 16:30
<u>WEIGHT</u>	:	40 : 60
TOTAL MARKS	:	108
EXAMINER	:	MR C BRUWER
MODERATOR	:	MR B RAATH
NUMBER OF PAGES	:	4 PAGES
INSTRUCTIONS	:	THIS IS A PARTIAL OPEN BOOK TEST, THE FOLLOWING IS ALLOWED: • SANS 10162 • SANS 10160 • STEEL TABLES • ADDITIONAL STEEL TABLES • 2 PAGES WITH STUDENT NOTES
REQUIREMENTS	:	PROGRAMABLE POCKET CALCULATORS ALLOWED.

- 2 -

QUESTION 1

The figure below show a truss with pin-jointed members subjected to the following point loads:


• Nominal point load at B: Permanent (Dead) = 178 kN

Imposed (Live) = 112 kN

• Neglect the own weight of the structure.

Answer the following questions whilst determining if members AD and AE can resist the ultimate forces.

• 1.1 Determine the ultimate forces in elements AD and AE	(4)
• 1.2 Check if the compression member (bolted on the one end and welded on the other	r). is
adequate to resist the generated force by investigating the following:	
 1.2.1 Slenderness limits 	(5)
 1.2.2 Local buckling 	(3)
 1.2.3 Member buckling due to torsional-flexural buckling 	(9)
 1.2.4 Member buckling due to flexural buckling 	(2)
• 1.2.5 Compare the minimum compression resistance force to the ultimate	
compression force and comment.	(1)
• 1.3 Check if the tension member (bolted on the one end and welded on the other)	
is adequate to resist the generated force by investigating the following:	
○ 1.3.1 Slenderness limit	(2)
 1.3.2 Yielding failure 	(1)
Bolted side of the element	
• 1.3.3 Bolt hole layout is given below, check if it meets the minimum	
requirements	(6)
 1.3.4 Bolt shear, also check for reduction of long lap splices 	(4)
 1.3.5 Bearing resistance of the member 	(2)
 1.3.6 Fracture failure 	(2)
 1.3.7 Tension fracture and shear fracture 	(4)
 1.3.8 Tension fracture and shear yielding 	(4)
Welded side of the element	
 1.3.9 Weld shear failure 	(3)
 1.3.10 Fracture failure 	(5)
Compare minimum tensile resistance against ultimate tensile force.	
 1.3.11 Determine and name the minimum tensile resistance force and 	
compare it to the ultimate tensile force and comment.	(2)
Use the following information:	
• All members are 100x100x10 Equal Angle, sawn to length, grade 350W steel.	
$r_o = 54.1 \text{ mm}, C_w = 45.3 \times 10^6 \text{ mm}^6 \text{ and } \Omega = 631.8 \times 10^{-3}$	
• All bolts are 16mm fully threaded Class 8.8 bolts. One line of 7 bolts. End	
distance is 30mm, pitch is 55mm and edge distance is 25mm.	
• All holes are drilled.	
• Parallel weld (6mm E70XX) 90 mm long on both sides and transvers weld on the	
end of element	
 Connection plates are 350W steel and 14mm thick 	
	[59]

QUESTION 2

Check if a 50x100 mm timber member (3.2m long) which is part of a truss spanning 6.5 m is adequate to resist an ultimate tensile force of 8.9 kN by:

- 2.1 Check the maximum slenderness ratio and maximum slenderness value (6)
- 2.2 Determining the tensile resistance of the member (11)
- 2.3 Compare the resistance force to the ultimate force

Additional notes:

- The tensile force is parallel to the grain of the solid SA pine, grade 06.
- The tie is connected by means of 4 x 16 mm bolts spaced in 2 rows and 2 lines
- The ultimate tensile force results from the following loads applied permanently onto the truss:
 - Ultimate dead load = 3.5 kN/m^2
 - Ultimate live load = 2.0 kN/m^2
 - Ultimate wind load = 2.5kN/m²
- The trusses will be spaced at 700mm apart
- The member is treated with a water-borne preservative or a fire retardant
- The moisture content will not exceed 20%

[18]

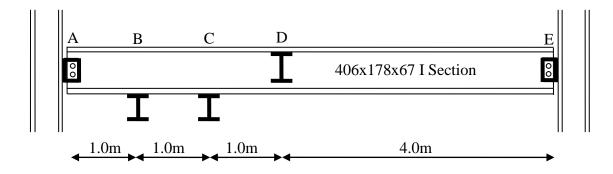
(1)

- 4 -

QUESTION 3

•

The figure below shows a beam A-E (406x178x67 I section Grade 350W) simply supported at A and E with a lateral support the compression flange at D. Beam A-E is carrying two beams at B and C, attached to the bottom flange, which impose the following loads:


- Nominal fixed point load at B: Permanent (Dead) = 25 kN
 - Imposed (Live) = 25 kNNominal fixed point load at C: Permanent (Dead)= 45 kN

Imposed (Live) = 35 kN

- Nominal fixed point load at D: Permanent (Dead)= 25 kN Imposed (Live) = 25 kN
- Neglect the beam's own weight

Determine if the beam (both segments) is adequate to support the applied loads by checking the following:

• 3.1 Determine the ultimate loads	(3)	
• 3.2 Draw the ultimate shear force and bending moment diagrams		
• 3.3 Determine the class of the beam		
• 3.4 Bending for segment A-D		
 3.4.1 Determine the moment of resistance 	(9)	
 3.4.2 Compare the ultimate moment to the moment of resistance 	(1)	
• 3.5 Shear		
 3.5.1 Determine shear resistance 	(6)	
 3.5.2.Compare the ultimate shear resistance to shear resistance 	(1)	
	[31]	

