

UNIVERSITY OF JOHANNESBURG

SUPPLEMENTARY EXAM JANUARY 2019

COURSE: ENGINEERING	
MODULE: THERMODYNAMICS 2B (TRDMCB2)	
EXAMINER: Mr. T MATHONSI	TIME: 3 HOURS
MODERATOR: DR. DM MADYIRA	MARKS: 100
QUESTION 1	[10]
Schematically illustrate a simple vapour-compression refrigeration process in the cycle referring to the state/phase of the refrigeration of the refrigerati	-
QUESTION 2	[15]
Describe the following:	[5]
 A quasi-equilibrium process A pure substance State A phase The first law of thermodynamics 	rogion on a Turdiagram
A saturation curve is defined as the curve enclosing the 2-phase	
	[10]
 Draw the T-v diagram illustrating the saturation curve Identify the location of the critical point on the diagram Identify each region on the diagram Illustrate a constant pressure process curve 	
QUESTION 3	[19]
Give a general energy balance for a system at a uniform state ur proceeding from time 1 to time 2.	ndergoing a transient process [2]
A 1-m ³ tank contains ammonia at 150 kPa, 25°C. The tank is	s attached to a line flowing

A 1-m³ tank contains ammonia at 150 kPa, 25°C. The tank is attached to a line flowing ammonia at 1200 kPa, 60°C. The valve is opened and mass flows in until the tank is half full of liquid (by volume) at 25°C.

- Evaluate the continuity and energy equations for this process. [4]
- Calculate the heat transferred from the tank during this process. [13]

QUESTION 4

Describe and illustrate Kelvin-Planck and Clausius statements of the Second Law. [4]

Assume a cyclic heat engine exchanges 6 kW with a 250°C reservoir and Q_L is exchanged with ambient at 30°C. If the heat engine has:

- (a) $Q_L = 0 \text{ kW}$, W. = 6 kW
- (b) $Q_L = 6 \text{ kW}, \text{ W}. = 0 \text{ kW}$

What can you say about the processes in the two cases (a) and (b)? [2]

Determine the power output and the low temperature heat rejection rate for a Carnot cycle heat engine that receives 6 kW at 250°C and rejects heat at 30°C. [6]

An R-410a heat pump cycle shown in the figure below has an R-410a flow rate of 0.05 kg/s with 5 kW into the compressor. Calculate the coefficient of performance of the R-410a heat pump cycle.

The following data are given:

State	1	2	3	4	5	6
P [kPa]	3100	3050	3000	420	400	390
T [°C]	120	110	45		-10	-5
h [kJ/kg]	377	367	134		280	284

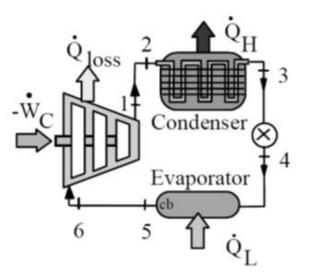
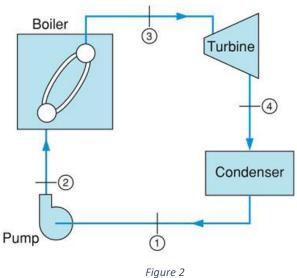



Figure 1

[18]

[6]

Steam enters the turbine of a power plant at 5 MPa and 400°C, and exhausts to the condenser at 10 kPa as shown in Figure 4. The turbine produces a power output of 20 000 kW with an isentropic efficiency of 85%.

• Illustrate the cycle on a T-s diagram, indicating relevant values at each point on the diagram. [5]

•	What is the mass flow rate of steam around the cycle?	[14]
•	Determine the rate of heat rejection in the condenser	[5]
•	Find the thermal efficiency of the power plant	[10]

• How does the thermal efficiency compare with a Carnot cycle? [4]

Formulas

Control volumes and units

$$P = \frac{F}{A} \quad \text{(mathematical limit for small } A\text{)}$$

$$v = \frac{V}{m}$$

$$\rho = \frac{m}{V} \quad \text{(Tables A.3, A.4, A.5, F.2, F.3, and F.4)}$$

$$\Delta P = \rho g H \text{(depth } H \text{ in fluid of density } \rho\text{)}$$

$$T[K] = T[^{\circ}C] + 273.15$$

$$T[R] = T[F] + 459.67$$

$$F = ma$$

$$a = \frac{d^2x}{dt^2} = \frac{d\mathbf{V}}{dt}$$

$$\mathbf{V} = \frac{dx}{dt}$$

Pure substance behaviour

 $\begin{aligned} x &= m_{\text{vap}}/m \quad (\text{vapor mass fraction}) \\ 1 &- x &= m_{\text{liq}}/m \quad (\text{liquid mass fraction}) \\ v &= (1 - x)v_f + xv_g \quad (\text{only two-phase mixture}) \\ P - v - T \qquad \text{Tables or equation of state} \\ Pv &= RT \qquad PV = mRT = n\overline{R}T \\ \overline{R} &= 8.3145 \text{ kJ/kmol K} \\ R &= \overline{R}/M \qquad \text{kJ/kg K, Table A.5 or } M \text{ from Table A.2} \\ &\qquad \text{ft lbf/lbm } R, \text{ Table F.4 or } M \text{ from Table F.1} \\ Pv &= ZRT \qquad \text{Chart for } Z \text{ in Fig. D.1} \\ P_r &= \frac{P}{P_c} \qquad T_r = \frac{T}{T_c} \qquad \text{Entry to compressibility chart} \end{aligned}$

Energy transfers

$$W = \int_{1}^{2} F \, dx = \int_{1}^{2} P \, dV = \int_{1}^{2} \mathcal{G} \, dA = \int_{1}^{2} T \, d\theta$$

$$W = W/m \quad (\text{work per unit mass})$$

$$W = F \mathbf{V} = P\dot{V} = T\omega \quad (V \text{ displacement rate})$$

$$V \text{elocity } \mathbf{V} = r\omega, \text{ torque } T = Fr, \text{ angular velocity} = \omega$$

$$PV^{n} = \text{ constant} \quad \text{or} \quad Pv^{n} = \text{ constant}$$

$$1W_{2} = \frac{1}{1-n} \left(P_{2}V_{2} - P_{1}V_{1}\right) \quad (\text{if } n \neq 1)$$

$$1W_{2} = P_{1}V_{1} \ln \frac{V_{2}}{V_{1}} \quad (\text{if } n = 1)$$

$$\dot{Q} = -kA \frac{dT}{dx}$$

$$k \quad (W/m \text{ K})$$

$$\dot{Q} = hA \Delta T$$

$$h(W/m^{2} \text{ K})$$

$$\dot{Q} = \epsilon \sigma A (T_{s}^{4} - T_{amb}^{4}) \quad (\sigma = 5.67 \times 10^{-8} \text{ W/m}^{2} \text{ K}^{4})$$

$$1Q_{2} = \int \dot{Q} \, dt \approx \dot{Q}_{avg} \Delta t$$

Energy equation

$$E = U + KE + KE = mu + \frac{1}{2}mV^2 + mgZ$$

$$KE = \frac{1}{2}mV^2$$

$$KE = mgZ$$

$$e = u + \frac{1}{2}V^2 + gZ$$

$$h \equiv u + Pv$$

$$u = u_f + xu_{fg} = (1 - x)u_f + xu_g$$

$$h = h_f + xh_{fg} = (1 - x)h_f + xh_g$$

$$C_v = \left(\frac{\partial u}{\partial T}\right)_v; C_p = \left(\frac{\partial h}{\partial T}\right)_p$$
Incompressible, so $v = \text{constant} \cong v_f$ and v very small

$$C = C_v = C_p \quad [\text{Tables A.3 and A.4 (F.2 and F.3)]}$$

$$u_2 - u_1 = C(T_2 - T_1)$$

$$h_2 - h_1 = u_2 - u_1 + v(P_2 - P_1) \quad (\text{Often the second term} \text{ is small.})$$

$$h = h_f + v_f (P - P_{sat}); u \cong u_f \quad (\text{saturated at same } T)$$

$$h = u' + Pv = u + RT \quad (\text{only functions of } T)$$

$$C_v = \frac{du}{dT}; C_p = \frac{dh}{dT} = C_v + R$$

$$u_2 - u_1 = \int C_v dT \cong C_v (T_2 - T_1)$$

$$h_2 - h_1 = \int C_p dT \cong C_p (T_2 - T_1)$$

$$\dot{E} = \dot{Q} - \dot{W} \quad (\text{rate} = + \text{ in - out})$$

$$E_2 - E_1 = _1Q_2 - _1W_2 \quad (\text{change} = + \text{ in - out})$$

$$m(e_2 - e_1) = m(u_2 - u_1) + \frac{1}{2}m(V_2^2 - V_1^2) + mg(Z_2 - Z_1)$$

$$E = m_Ae_A + m_Be_B + m_Ce_C + \cdots$$

 $\dot{V} = \int \mathbf{V} \, dA = A \mathbf{V} \qquad \text{(using average velocity)}$ $\dot{m} = \int \rho \, \mathbf{V} \, dA = \rho A \mathbf{V} = A \mathbf{V} / v \qquad \text{(using average values)}$ $\dot{W}_{\text{flow}} = P \dot{V} = \dot{m} P v$

$$\dot{m}_{\text{C.V.}} = \sum \dot{m}_i - \sum \dot{m}_e$$

$$\dot{E}_{\text{C.V.}} = \dot{Q}_{\text{C.V.}} - \dot{W}_{\text{C.V.}} + \sum \dot{m}_i h_{\text{tot }i} - \sum \dot{m}_e h_{\text{tot }e}$$

$$h_{\text{tot}} = h + \frac{1}{2} \mathbf{V}^2 + gZ = h_{\text{stagnation}} + gZ$$

$$\sum \dot{m}_i = \sum \dot{m}_e \quad (\text{in} = \text{out})$$

$$\dot{Q}_{\text{C.V.}} + \sum \dot{m}_i h_{\text{tot }i} = \dot{W}_{\text{C.V.}} + \sum \dot{m}_e h_{\text{tot }e} \quad (\text{in = out})$$

$$q = \dot{Q}_{\text{C.V.}} / \dot{m} \quad (\text{steady state only})$$

$$w = \dot{W}_{\text{C.V.}} / \dot{m} \quad (\text{steady state only})$$

$$q + h_{\text{tot }i} = w + h_{\text{tot }e} \quad (\text{in = out})$$

$$\begin{split} m_2 &- m_1 = \sum_{i=1}^{n} m_i - \sum_{i=1}^{n} m_e \\ E_2 &- E_1 = \frac{1}{2} Q_2 - \frac{1}{4} W_2 + \sum_{i=1}^{n} m_i h_{\text{tot } i} - \sum_{i=1}^{n} m_e h_{\text{tot } e} \\ E_2 &- E_1 = m_2 (u_2 + \frac{1}{2} \mathbf{V}_2^2 + gZ_2) - m_1 (u_1 + \frac{1}{2} \mathbf{V}_1^2 + gZ_1) \\ h_{\text{tot } e} &= h_{\text{tot exit average}} \approx \frac{1}{2} (h_{\text{hot } e1} + h_{\text{tot } e2}) \end{split}$$

Second law

$$\begin{split} \widetilde{W}_{\text{HE}} &= \mathcal{Q}_{H} - \mathcal{Q}_{L}; \qquad \eta_{\text{HE}} = \frac{W_{\text{HE}}}{\mathcal{Q}_{H}} = 1 - \frac{\mathcal{Q}_{L}}{\mathcal{Q}_{H}} \\ W_{\text{HP}} &= \mathcal{Q}_{H} - \mathcal{Q}_{L}; \qquad \beta_{\text{HP}} = \frac{\mathcal{Q}_{H}}{W_{\text{HP}}} = \frac{\mathcal{Q}_{H}}{\mathcal{Q}_{H} - \mathcal{Q}_{L}} \\ W_{\text{REF}} &= \mathcal{Q}_{H} - \mathcal{Q}_{L}; \qquad \beta_{\text{REF}} = \frac{\mathcal{Q}_{L}}{W_{\text{REF}}} = \frac{\mathcal{Q}_{L}}{\mathcal{Q}_{H} - \mathcal{Q}_{L}} \\ \eta_{\text{HE}} &= \frac{W_{\text{HE}}}{\mathcal{Q}_{H}} \leq \eta_{\text{Carnot HE}} = 1 - \frac{T_{L}}{T_{H}} \\ \beta_{\text{HP}} &= \frac{\mathcal{Q}_{H}}{W_{\text{HP}}} \leq \beta_{\text{Carnot HP}} = \frac{T_{H}}{T_{H} - T_{L}} \\ \beta_{\text{REF}} &= \frac{\mathcal{Q}_{L}}{W_{\text{REF}}} \leq \beta_{\text{Carnot REF}} = \frac{T_{L}}{T_{H} - T_{L}} \\ \dot{\mathcal{Q}} = C \Delta T \\ \int \frac{d\mathcal{Q}}{T} \leq 0 \\ ds &= \frac{dq}{T} + ds_{\text{gen}}; \qquad ds_{\text{gen}} \geq 0 \\ \delta S_{\text{c.m.}} &= \sum \frac{\dot{\mathcal{Q}}_{\text{c.m}}}{T} + \dot{S}_{\text{gen}} \\ m(s_{2} - s_{1}) &= \int_{1}^{2} \frac{\delta \mathcal{Q}}{T} + {}_{1}S_{2 \text{ gen}}; \qquad {}_{1}S_{2 \text{ gen}} \geq 0 \\ \Delta S_{\text{net}} = \Delta S_{\text{cm}} + \Delta S_{\text{surr}} = \Delta S_{\text{gen}} \geq 0 \\ W_{\text{lost}} &= \int T dS_{\text{gen}} \\ {}_{1}W_{2} = \int P dV - W_{\text{lost}} \\ T ds &= du + P dv \\ T ds &= du + P dv \\ T ds &= dh - v dP \\ s_{2} - s_{1} &= \int \frac{du}{T} = \int C \frac{dT}{T} \approx C \ln \frac{T_{2}}{T_{1}} \\ s_{1}^{2} - s_{1} &= s_{1}^{0} - s_{1}^{0} - R \ln \frac{P_{2}}{P_{1}} \\ s_{2} - s_{1} &= c_{v} \ln \frac{T_{2}}{T_{1}} + R \ln \frac{v_{2}}{P_{1}} \\ s_{2} - s_{1} &= c_{v} \ln \frac{T_{2}}{T_{1}} + R \ln \frac{v_{2}}{P_{1}} \\ k &= C_{p0}/C_{v0} \end{split}$$

TABLE A.2 Critical Constants

Substance	Formula	Molec. Mass	Temp. (K)	Press. (MPa)	Vol. (m³/kg)
Ammonia	NH ₃	17.031	405.5	11.35	0.00426
Argon	Ar	39.948	150.8	4.87	0.00188
Bromine	Br ₂	159.808	588	10.30	0.000796
Carbon dioxide	CO2	44.01	304.1	7.38	0.00212
Carbon monoxide	CO	28.01	132.9	3.50	0.00333
Chlorine	C1 ₂	70.906	416.9	7.98	0.00175
Fluorine	F ₂	37.997	144.3	5.22	0.00174
Helium	He	4.003	5.19	0.227	0.0143
Hydrogen (normal)	H ₂	2.016	33.2	1.30	0.0323
Krypton	Kr	83.80	209.4	5.50	0.00109
Neon	Ne	20.183	44.4	2.76	0.00206
Nitric oxide	NO	30.006	180	6.48	0.00192
Nitrogen	N ₂	28.013	126.2	3.39	0.0032
Nitrogen dioxide	NO ₂	46.006	431	10.1	0.00365
Nitrous oxide	N ₂ O	44.013	309.6	7.24	0.00221
Oxygen	O ₂	31.999	154.6	5.04	0.00229
Sulfur dioxide	SO ₂	64.063	430.8	7.88	0.00191
Water	H ₂ O	18.015	647.3	22.12	0.00317
Xenon	Xe	131.30	289.7	5.84	0.000902
Acetylene	C_2H_2	26.038	308.3	6.14	0.00433
Benzene	C ₆ H ₆	78.114	562.2	4.89	0.00332
<i>n</i> -Butane	$C_{4}H_{10}$	58.124	425.2	3.80	0.00439
Chlorodifluoroethane (142b)	CH ₃ CClF ₂	100.495	410.3	4.25	0.00230
Chlorodifluoromethane (22)	CHClF ₂	86.469	369.3	4.97	0.00191
Dichlorofluoroethane (141)	CH ₃ CCl ₂ F	116.95	481.5	4.54	0.00215
Dichlorotrifluoroethane (123)	CHCl ₂ CF ₃	152.93	456.9	3.66	0.00182
Difluoroethane (152a)	CHF ₂ CH ₃	66.05	386.4	4.52	0.00272
Difluoromethane (32)	CF ₂ H ₂	52.024	351.3	5.78	0.00236
Ethane	C_2H_6	30.070	305.4	4.88	0.00493
Ethyl alcohol	C ₂ H ₅ OH	46.069	513.9	6.14	0.00363
Ethylene	C_2H_4	28.054	282.4	5.04	0.00465
n-Heptane	C7H16	100.205	540.3	2.74	0.00431
<i>n</i> -Hexane	C_6H_{14}	86.178	507.5	3.01	0.00429
Methane	CH_4	16.043	190.4	4.60	0.00615
Methyl alcohol	CH ₃ OH	32.042	512.6	8.09	0.00368
n-Octane	C8H18	114.232	568.8	2.49	0.00431
Pentafluoroethane (125)	CHF ₂ CF ₃	120.022	339.2	3.62	0.00176
<i>n</i> -Pentane	C5H12	72.151	469.7	3.37	0.00421
Propane	C_3H_8	44.094	369.8	4.25	0.00454
Propene	C_3H_6	42.081	364.9	4.60	0.00430
Refrigerant mixture	R-410a	72.585	344.5	4.90	0.00218
Tetrafluoroethane (134a)	CF ₃ CH ₂ F	102.03	374.2	4.06	0.00197

TABLE A.3

Properties of Selected Solids at 25°C

Substance	ρ (kg/m³)	C _P (kJ/kg-K)
Asphalt	2120	0.92
Brick, common	1800	0.84
Carbon, diamond	3250	0.51
Carbon, graphite	2000-2500	0.61
Coal	1200-1500	1.26
Concrete	2200	0.88
Glass, plate	2500	0.80
Glass, wool	20	0.66
Granite	2750	0.89
Ice (0°C)	917	2.04
Paper	700	1.2
Plexiglass	1180	1.44
Polystyrene	920	2.3
Polyvinyl chloride	1380	0.96
Rubber, soft	1100	1.67
Sand, dry	1500	0.8
Salt, rock	2100-2500	0.92
Silicon	2330	0.70
Snow, firm	560	2.1
Wood, hard (oak)	720	1.26
Wood, soft (pine)	510	1.38
Wool	100	1.72
Metals		
Aluminum	2700	0.90
Brass, 60-40	8400	0.38
Copper, commercial	8300	0.42
Gold	19300	0.13
Iron, cast	7272	0.42
Iron, 304 St Steel	7820	0.46
Lead	11340	0.13
Magnesium, 2% Mn	1778	1.00
Nickel, 10% Cr	8666	0.44
Silver, 99.9% Ag	10524	0.24
Sodium	971	1.21
Tin	7304	0.22
Tungsten	19300	0.13
Zinc	7144	0.39

TABLE A.4 Properties of Some Liquids at 25° C*

Substance	ρ (kg/m²)	C _p (kJ/kg-K)
Ammonia	604	4.84
Benzene	879	1.72
Butane	556	2.47
CCL	1584	0.83
CO2	680	2.9
Ethanol	783	2.46
Gasoline	750	2.08
Glycerine	1260	2.42
Kerosene	815	2.0
Methanol	787	2.55
n-Octane	692	2.23
Oil engine	885	1.9
Oil light	910	1.8
Propane	510	2.54
R-12	1310	0.97
R-22	1190	1.26
R-32	961	1.94
R-125	1191	1.41
R-134a	1206	1.43
R-410a	1059	1.69
Water	997	4.18
Liquid metals		
Bismuth, Bi	10040	0.14
Lead, Pb	10660	0.16
Mercury, Hg	13580	0.14
NaK (56/44)	887	1.13
Potassium, K	828	0.81
Sodium, Na	929	1.38
Tin, Sn	6950	0.24
Zinc, Zn	6570	0.50

*Or T_{msk} if higher.

Gas	Chemical Formula	Molecular Mass (kg/kmol)	<i>R</i> (kJ/kg-K)	ρ (kg/m³)	С _{р0} (kJ/kg-K)	C _{v0} (kJ/kg-K)	$k = \frac{C_{\rho}}{C_{\nu}}$
Steam	H ₂ O	18.015	0.4615	0.0231	1.872	1.410	1.327
Acetylene	C_2H_2	26.038	0.3193	1.05	1.699	1.380	1.231
Air	_	28.97	0.287	1.169	1.004	0.717	1.400
Ammonia	NH_3	17.031	0.4882	0.694	2.130	1.642	1.297
Argon	Ar	39.948	0.2081	1.613	0.520	0.312	1.667
Butane	C_4H_{10}	58.124	0.1430	2.407	1.716	1.573	1.091
Carbon dioxide	CO ₂	44.01	0.1889	1.775	0.842	0.653	1.289
Carbon monoxide	CO	28.01	0.2968	1.13	1.041	0.744	1.399
Ethane	C_2H_6	30.07	0.2765	1.222	1.766	1.490	1.186
Ethanol	C ₂ H ₅ OH	46.069	0.1805	1.883	1.427	1.246	1.145
Ethylene	C_2H_4	28.054	0.2964	1.138	1.548	1.252	1.237
Helium	He	4.003	2.0771	0.1615	5.193	3.116	1.667
Hydrogen	H ₂	2.016	4.1243	0.0813	14.209	10.085	1.409
Methane	CH_4	16.043	0.5183	0.648	2.254	1.736	1.299
Methanol	CH ₃ OH	32.042	0.2595	1.31	1.405	1.146	1.227
Neon	Ne	20.183	0.4120	0.814	1.03	0.618	1.667
Nitric oxide	NO	30.006	0.2771	1.21	0.993	0.716	1.387
Nitrogen	N_2	28.013	0.2968	1.13	1.042	0.745	1.400
Nitrous oxide	N_2O	44.013	0.1889	1.775	0.879	0.690	1.274
<i>n</i> -Octane	$C_{8}H_{18}$	114.23	0.07279	0.092	1.711	1.638	1.044
Oxygen	O ₂	31.999	0.2598	1.292	0.922	0.662	1.393
Propane	C_3H_8	44.094	0.1886	1.808	1.679	1.490	1.126
R-12	CCl_2F_2	120.914	0.06876	4.98	0.616	0.547	1.126
R-22	CHCIF ₂	86.469	0.09616	3.54	0.658	0.562	1.171
R-32	CF_2H_2	52.024	0.1598	2.125	0.822	0.662	1.242
R-125	CHF ₂ CF ₃	120.022	0.06927	4.918	0.791	0.722	1.097
R-134a	CF ₃ CH ₂ F	102.03	0.08149	4.20	0.852	0.771	1.106
Sulfur dioxide	SO ₂	64.059	0.1298	2.618	0.624	0.494	1.263
Sulfur trioxide	SO ₃	80.053	0.10386	3.272	0.635	0.531	1.196

TABLE A.5 Properties of Various Ideal Gases at 25° C, 100 kPa^{*} (SI Units)

*Or saturation pressure if it is less than 100 kPa.

C _{pt}	$-C_0+C_1\theta+$	(kJ/kg K)	$\theta = T$ (Kelvi	n)/1000	
Gas	Formula	Co	<i>C</i> 1	C2	<i>C</i> 1
Steam	H ₂ O	1.79	0.107	0.586	-0.20
Acetylene	C ₂ H ₂	1.03	2.91	-1.92	0.54
Air	_	1.05	-0.365	0.85	-0.39
Ammonia	NHa	1.60	1.4	1.0	-0.7
Argon	Ar	0.52	0	0	0
Butane	C ₄ H ₁₀	0.163	5.70	-1.906	-0.049
Carbon dioxide	CO2	0.45	1.67	-1.27	0.39
Carbon monoxide	CO	1.10	-0.46	1.0	-0.454
Ethane	C_2H_6	0.18	5.92	-2.31	0.29
Ethanol	C ₂ H ₅ OH	0.2	-4.65	-1.82	0.03
Ethylene	C_2H_6	0.136	5.58	-3.0	0.63
Helium	He	5.193	0	0	0
Hydrogen	H2	13.46	4.6	-6.85	3.79
Methane	CH	1.2	3.25	0.75	-0.71
Methanol	CH ₂ OH	0.66	2.21	0.81	-0.89
Neon	Ne	1.03	0	0	0
Nitric oxide	NO	0.98	-0.031	0.325	-0.14
Nitrogen	Nz	1.11	-0.48	0.96	-0.42
Nitrous oxide	N ₂ O	0.49	1.65	-1.31	0.42
n-Octane	C ₈ H ₁₈	-0.053	6.75	-3.67	0.775
Oxygen	Oz	0.88	-0.0001	0.54	-0.33
Propane	C ₃ H ₈	-0.096	6.95	-3.6	0.73
R-12*	CCl ₂ F ₂	0.26	1.47	-1.25	0.36
R-22*	CHCIF2	0.2	1.87	-1.35	0.35
R-32*	CF ₂ H ₂	0.227	2.27	-0.93	0.041
R-125*	CHF ₂ CF ₃	0.305	1.68	-0.284	0
R-134a*	CF2CH2F	0.165	2.81	-2.23	1.11
Sulfur diaxide	SO2	0.37	1.05	-0.77	0.21
Sulfur trioxide	SO ₂	0.24	1.7	-1.5	0.46

TABLE A.6 Constant-Pressure Specific Heats of Various Ideal Gases[†]

[†]Approximate forms valid from 250 K to 1200 K. ^{*}Formula limited to maximum 500 K.

Т (К)	u (kJ/kg)	h (kJ/kg)	s ⁰ (kJ/kg-K)	Т (К)	u (kJ/kg)	h (kJ/kg)	s ⁰ (kJ/kg-K)
200	142.77	200.17	6.46260	1100	845.45	1161.18	8.24449
220	157.07	220.22	6.55812	1150	889.21	1219.30	8.29616
240	171.38	240.27	6.64535	1200	933.37	1277.81	8.34596
260	185.70	260.32	6.72562	1250	977.89	1336.68	8.39402
280	200.02	280.39	6.79998	1300	1022.75	1395.89	8.44046
290	207.19	290.43	6.83521	1350	1067.94	1455.43	8.48539
298.15	213.04	298.62	6.86305	1400	1113.43	1515.27	8.52891
300	214.36	300.47	6.86926	1450	1159.20	1575.40	8.57111
320	228.73	320.58	6.93413	1500	1205.25	1635.80	8.61208
340	243.11	340.70	6.99515	1550	1251.55	1696.45	8.65185
360	257.53	360.86	7.05276	1600	1298.08	1757.33	8.69051
380	271.99	381.06	7.10735	1650	1344.83	1818.44	8.72811
400	286.49	401.30	7.15926	1700	1391.80	1879.76	8.76472
420	301.04	421.59	7.20875	1750	1438.97	1941.28	8.80039
440	315.64	441.93	7.25607	1800	1486.33	2002.99	8.83516
460	330.31	462.34	7.30142	1850	1533.87	2064.88	8.86908
480	345.04	482.81	7.34499	1900	1581.59	2126.95	8.90219
500	359.84	503.36	7.38692	1950	1629.47	2189.19	8.93452
520	374.73	523.98	7.42736	2000	1677.52	2251.58	8.96611
540	389.69	544.69	7.46642	2050	1725.71	2314.13	8.99699
560	404.74	565.47	7.50422	2100	1774.06	2376.82	9.02721
580	419.87	586.35	7.54084	2150	1822.54	2439.66	9.05678
600	435.10	607.32	7.57638	2200	1871.16	2502.63	9.08573
620	450.42	628.38	7.61090	2250	1919.91	2565.73	9.11409
640	465.83	649.53	7.64448	2300	1968.79	2628.96	9.14189
660	481.34	670.78	7.67717	2350	2017.79	2692.31	9.16913
680	496.94	692.12	7.70903	2400	2066.91	2755.78	9.19586
700	512.64	713.56	7.74010	2450	2116.14	2819.37	9.22208
720	528.44	735.10	7.77044	2500	2165.48	2883.06	9.24781
740	544.33	756.73	7.80008	2550	2214.93	2946.86	9.27308
760	560.32	778.46	7.82905	2600	2264.48	3010.76	9.29790
780	576.40	800.28	7.85740	2650	2314.13	3074.77	9.32228
800	592.58	822.20	7.88514	2700	2363.88	3138.87	9.34625
850	633.42	877.40	7.95207	2750	2413.73	3203.06	9.36980
900	674.82	933.15	8.01581	2800	2463.66	3267.35	9.39297
950	716.76	989.44	8.07667	2850	2513.69	3331.73	9.41576
1000	759.19	1046.22	8.13493	2900	2563.80	3396.19	9.43818
1050	802.10	1103.48	8.19081	2950	2613.99	3460.73	9.46025
1100	845.45	1161.18	8.24449	3000	2664.27	3525.36	9.48198

TABLE A7.1 Ideal-Gas Properties of Air, Standard Entropy at 0.1-MPa (1-Bar) Pressure

TABLE B.1.1 Saturated Water

		Spe	cific Volume, m ¹	¹ /kg	Internal Energy, kJ/kg		
Temp.	Press.	Sat. Liquid	Evap.	Sat. Vapor	Sat. Liquid	Evap.	Sat. Vapor
(°C)	(kPa)	Vf	VIE	vg	u _f	uig	ug
0.01	0.6113	0.001000	206.131	206.132	0	2375.33	2375.33
5	0.8721	0.001000	147.117	147.118	20.97	2361.27	2382.24
10	1.2276	0.001000	106.376	106.377	41.99	2347.16	2389.15
15	1.705	0.001001	77.924	77.925	62.98	2333.06	2396.04
20	2.339	0.001002	57.7887	57.7897	83.94	2318.98	2402.91
25	3.169	0.001003	43.3583	43.3593	104.86	2304.90	2409.76
30	4.246	0.001004	32.8922	32.8932	125.77	2290.81	2416.58
35	5.628	0.001006	25.2148	25.2158	146.65	2276.71	2423.36
40	7.384	0.001008	19.5219	19.5229	167.53	2262.57	2430.11
45	9.593	0.001010	15.2571	15.2581	188.41	2248.40	2436.81
50	12.350	0.001012	12.0308	12.0318	209.30	2234.17	2443.47
55	15.758	0.001015	9.56734	9.56835	230.19	2219.89	2450.08
60	19.941	0.001017	7.66969	7.67071	251.09	2205.54	2456.63
65	25.03	0.001020	6.19554	6.19656	272.00	2191.12	2463.12
70	31.19	0.001023	5.04114	5.04217	292.93	2176.62	2469.55
75	38.58	0.001026	4.13021	4.13123	313.87	2162.03	2475.91
80	47.39	0.001029	3.40612	3.40715	334.84	2147.36	2482.19
85	57.83	0.001032	2.82654	2.82757	355.82	2132.58	2488.40
90	70.14	0.001036	2.35953	2.36056	376.82	2117.70	2494.52
95	84.55	0.001040	1.98082	1.98186	397.86	2102.70	2500.56
100	101.3	0.001044	1.67185	1.67290	418.91	2087.58	2506.50
105	120.8	0.001047	1.41831	1.41936	440.00	2072.34	2512.34
110	143.3	0.001052	1.20909	1.21014	461.12	2056.96	2518.09
115	169.1	0.001056	1.03552	1.03658	482.28	2041.44	2523.72
120	198.5	0.001060	0.89080	0.89186	503.48	2025.76	2529.24
125	232.1	0.001065	0.76953	0.77059	524.72	2009.91	2534.63
130	270.1	0.001070	0.66744	0.66850	546.00	1993.90	2539.90
135	313.0	0.001075	0.58110	0.58217	567.34	1977.69	2545.03
140	361.3	0.001080	0.50777	0.50885	588.72	1961.30	2550.02
145	415.4	0.001085	0.44524	0.44632	610.16	1944.69	2554.86
150	475.9	0.001090	0.39169	0.39278	631.66	1927.87	2559.54
155	543.1	0.001096	0.34566	0.34676	653.23	1910.82	2564.04
160	617.8	0.001102	0.30596	0.30706	674.85	1893.52	2568.37
165	700.5	0.001108	0.27158	0.27269	696.55	1875.97	2572.51
170	791.7	0.001114	0.24171	0.24283	718.31	1858.14	2576.46
175	892.0	0.001121	0.21568	0.21680	740.16	1840.03	2580.19
180	1002.2	0.001127	0.19292	0.19405	762.08	1821.62	2583.70
185	1122.7	0.001134	0.17295	0.17409	784.08	1802.90	2586.98
190	1254.4	0.001141	0.15539	0.15654	806.17	1783.84	2590.01

TABLE B.1.1 (continued) Saturated Water

		1	ènthalpy, kJ/k	8	Er	itropy, kJ/kg	·K
Temp. (°C)	Press. (kPa)	Sat. Liquid	Evap. h _{1g}	Sat. Vapor hg	Sat. Liquid	Evap.	Sat. Vapo
						Sig	Sg
0.01	0.6113	0.00	2501.35	2501.35	0	9.1562	9.1562
5	0.8721	20.98	2489.57	2510 54	0.0761	8 9496	9.0257
10 15	1.2276	41.99	2477.75	2519.74	0.1510	8.7498	8.9007
	1.705	62.98	2465.93 2454.12	2528.91 2538.06	0.2245	8.5569	8.7813
20	2.339	83.94			0.2966	8.3706	8.6671
25	3.169	104.87 125.77	2442.30	2547.17	0.3673	8.1905	8.5579
30	4.246		2430.48	2556.25	0.4369	8.0164	8.4533
35	5.628	146.66	2418.62	2565.28	0.5052	7.8478	8.3530
40	7.384	167.54	2406.72	2574.26	0.5724	7.6845	8.2569
45	9.593	188.42	2394.77	2583.19	0.6386	7.5261	8.1647
50	12.350	209.31	2382.75	2592.06	0.7037	7.3725	8.0762
55	15.758	230.20	2370.66	2600.86	0.7679	7.2234	7.9912
60	19.941	251.11	2358.48	2609.59	0.8311	7.0784	7.9095
65	25.03	272.03	2346.21	2618.24	0.8934	6.9375	7.8309
70	31.19	292.96	2333.85	2626.80	0.9548	6.8004	7.7552
75	38.58	313.91	2321.37	2635.28	1.0154	6.6670	7.6824
80	47.39	334.88	2308.77	2643.66	1.0752	6.5369	7.6121
85	57.83	355.88	2296.05	2651.93	1.1342	6.4102	7.5444
90	70.14	376.90	2283.19	2660.09	1.1924	6.2866	7.4790
95	84.55	397.94	2270.19	2668.13	1.2500	6.1659	7.4158
100	101.3	419.02	2257.03	2676.05	1.3068	6.0480	7.3548
105	120.8	440.13	2243.70	2683.83	1.3629	5.9328	7.2958
110	143.3	461.27	2230.20	2691.47	1.4184	5.8202	7.2386
115	169.1	482.46	2216.50	2698.96	1.4733	5.7100	7.1832
120	198.5	503.69	2202.61	2706.30	1.5275	5.6020	7.1295
125	232.1	524.96	2188.50	2713.46	1.5812	5.4962	7.0774
130	270.1	546.29	2174.16	2720.46	1.6343	5.3925	7.0269
135	313.0	567.67	2159.59	2727.26	1.6869	5.2907	6.9777
140	361.3	589.11	2144.75	2733.87	1.7390	5.1908	6.9298
145	415.4	610.61	2129.65	2740.26	1.7906	5.0926	6.8832
150	475.9	632.18	2114.26	2746.44	1.8417	4.9960	6.8378
155	543.1	653.82	2098.56	2752.39	1.8924	4.9010	6.7934
160	617.8	675.53	2082.55	2758.09	1.9426	4.8075	6.7501
165	700.5	697.32	2066.20	2763.53	1.9924	4.7153	6.7078
170	791.7	719.20	2049.50	2768.70	2.0418	4.6244	6.6663
175	892.0	741.16	2032.42	2773.58	2.0909	4.5347	6.6256
180	1002.2	763.21	2014.96	2778.16	2.1395	4.4461	6.5857
185	1122.7	785.36	1997.07	2782.43	2.1878	4.3586	6.5464
190	1254.4	807.61	1978.76	2786.37	2.2358	4.2720	6.5078

TABLE B.1	.1 (continued)
Saturated	Water

		Spec	ific Volume, m	³ /kg	Inte	rnal Energy, k	J/kg
Temp.	Press.	Sat. Liquid	Evap.	Sat. Vapor	Sat. Liquid	Evap.	Sat. Vapor
(°C)	(kPa)	Vf	Vig	v _g	u _f	u _{fg}	ug
195	1397.8	0.001149	0.13990	0.14105	828.36	1764.43	2592.79
200	1553.8	0.001156	0.12620	0.12736	850.64	1744.66	2595.29
205	1723.0	0.001164	0.11405	0.11521	873.02	1724.49	2597.52
210	1906.3	0.001173	0.10324	0.10441	895.51	1703.93	2599.44
215	2104.2	0.001181	0.09361	0.09479	918.12	1682.94	2601.06
220	2317.8	0.001190	0.08500	0.08619	940.85	1661.49	2602.35
225	2547.7	0.001199	0.07729	0.07849	963.72	1639.58	2603.30
230	2794.9	0.001209	0.07037	0.07158	986.72	1617.17	2603.89
235	3060.1	0.001219	0.06415	0.06536	1009.88	1594.24	2604.11
240	3344.2	0.001229	0.05853	0.05976	1033.19	1570.75	2603.95
245	3648.2	0.001240	0.05346	0.05470	1056.69	1546.68	2603.37
250	3973.0	0.001251	0.04887	0.05013	1080.37	1522.00	2602.37
255	4319.5	0.001263	0.04471	0.04598	1104.26	1496.66	2600.93
260	4688.6	0.001276	0.04093	0.04220	1128.37	1470.64	2599.01
265	5081.3	0.001289	0.03748	0.03877	1152.72	1443.87	2596.60
270	5498.7	0.001302	0.03434	0.03564	1177.33	1416.33	2593.66
275	5941.8	0.001317	0.03147	0.03279	1202.23	1387.94	2590.17
280	6411.7	0.001332	0.02884	0.03017	1227.43	1358.66	2586.09
285	6909.4	0.001348	0.02642	0.02777	1252.98	1328.41	2581.38
290	7436.0	0.001366	0.02420	0.02557	1278.89	1297.11	2575.99
295	7992.8	0.001384	0.02216	0.02354	1305.21	1264.67	2569.87
300	8581.0	0.001404	0.02027	0.02167	1331.97	1230.99	2562.96
305	9201.8	0.001425	0.01852	0.01995	1359.22	1195.94	2555.16
310	9856.6	0.001447	0.01690	0.01835	1387.03	1159.37	2546.40
315	10547	0.001472	0.01539	0.01687	1415.44	1121.11	2536.55
320	11274	0.001499	0.01399	0.01549	1444.55	1080.93	2525.48
325	12040	0.001528	0.01267	0.01420	1474.44	1038.57	2513.01
330	12845	0.001561	0.01144	0.01300	1505.24	993.66	2498.91
335	13694	0.001597	0.01027	0.01186	1537.11	945.77	2482.88
340	14586	0.001638	0.00916	0.01080	1570.26	894.26	2464.53
345	15525	0.001685	0.00810	0.00978	1605.01	838.29	2443.30
350	16514	0.001740	0.00707	0.00881	1641.81	776.58	2418.39
355	17554	0.001807	0.00607	0.00787	1681.41	707.11	2388.52
360	18651	0.001892	0.00505	0.00694	1725.19	626.29	2351.47
365	19807	0.002011	0.00398	0.00599	1776.13	526.54	2302.67
370	21028	0.002213	0.00271	0.00493	1843.84	384.69	2228.53
374.1	22089	0.003155	0	0.00315	2029.58	0	2029.58

TABLE B.1.1 (continued) Saturated Water

		1	Enthalpy, kJ/kg	ŧ	Er	Entropy, kJ/kg-K		
Temp.	Press.	Sat. Liquid	Evap.	Sat. Vapor	Sat. Liquid	Evap.	Sat. Vapo	
(°C)	(kPa)	hr	hig	hg	SI	Sig	Sg	
195	1397.8	829.96	1959.99	2789.96	2.2835	4.1863	6.4697	
200	1553.8	852.43	1940.75	2793.18	2.3308	4.1014	6.4322	
205	1723.0	875.03	1921.00	2796.03	2.3779	4.0172	6.3951	
210	1906.3	897.75	1900.73	2798.48	2.4247	3.9337	6.3584	
215	2104.2	920.61	1879.91	2800.51	2.4713	3.8507	6.3221	
220	2317.8	943.61	1858.51	2802.12	2.5177	3.7683	6.2860	
225	2547.7	966.77	1836.50	2803.27	2.5639	3.6863	6.2502	
230	2794.9	990.10	1813.85	2803.95	2.6099	3.6047	6.2146	
235	3060.1	1013.61	1790.53	2804.13	2.6557	3.5233	6.1791	
240	3344.2	1037.31	1766.50	2803.81	2.7015	3.4422	6.1436	
245	3648.2	1061.21	1741.73	2802.95	2.7471	3.3612	6.1083	
250	3973.0	1085.34	1716.18	2801.52	2.7927	3.2802	6.0729	
255	4319.5	1109.72	1689.80	2799.51	2.8382	3.1992	6.0374	
260	4688.6	1134.35	1662.54	2796.89	2.8837	3.1181	6.0018	
265	5081.3	1159.27	1634.34	2793.61	2.9293	3.0368	5.9661	
270	5498.7	1184.49	1605.16	2789.65	2.9750	2.9551	5.9301	
275	5941.8	1210.05	1574.92	2784.97	3.0208	2.8730	5.8937	
280	6411.7	1235.97	1543.55	2779.53	3.0667	2.7903	5.8570	
285	6909.4	1262.29	1510.97	2773.27	3.1129	2.7069	5.8198	
290	7436.0	1289.04	1477.08	2766.13	3.1593	2.6227	5.7821	
295	7992.8	1316.27	1441.78	2758.05	3.2061	2.5375	5.7436	
300	8581.0	1344.01	1404.93	2748.94	3.2533	2.4511	5.7044	
305	9201.8	1372.33	1366.38	2738.72	3.3009	2.3633	5.6642	
310	9856.6	1401.29	1325.97	2727.27	3.3492	2.2737	5.6229	
315	10547	1430.97	1283.48	2714.44	3.3981	2.1821	5.5803	
320	11274	1461.45	1238.64	2700.08	3.4479	2.0882	5.5361	
325	12040	1492.84	1191.13	2683.97	3.4987	1.9913	5.4900	
330	12845	1525.29	1140.56	2665.85	3.5506	1.8909	5.4416	
335	13694	1558.98	1086.37	2645.35	3.6040	1.7863	5.3903	
340	14586	1594.15	1027.86	2622.01	3.6593	1.6763	5.3356	
345	15525	1631.17	964.02	2595.19	3.7169	1.5594	5.2763	
350	16514	1670.54	893.38	2563.92	3.7776	1.4336	5.2111	
355	17554	1713.13	813.59	2526.72	3.8427	1.2951	5.1378	
360	18651	1760.48	720.52	2481.00	3.9146	1.1379	5.0525	
365	19807	1815.96	605.44	2421.40	3.9983	0.9487	4.9470	
370	21028	1890.37	441.75	2332.12	4.1104	0.6868	4.7972	
374.1	22089	2099.26	0	2099.26	4.4297	0	4.4297	

TABLE B.1	.2
Saturated	Water Pressure Entry

		Spe	cific Volume, m ³	/kg	Internal Energy, kJ/kg			
Press.	Temp.	Sat. Liquid	Evap.	Sat. Vapor	Sat. Liquid	Evap.	Sat. Vapo	
(kPa)	(°C)	Vſ	<i>u_{fg}</i>	Vg	<i>u_f</i>	<i>u_{fg}</i>	ug	
0.6113	0.01	0.001000	206.131	206.132	0	2375.3	2375.3	
1	6.98	0.001000	129.20702	129.20802	29.29	2355.69	2384.98	
1.5	13.03	0.001001	87.97913	87.98013	54.70	2338.63	2393.32	
2	17.50	0.001001	67.00285	67.00385	73.47	2326.02	2399.48	
2.5	21.08	0.001002	54.25285	54.25385	88.47	2315.93	2404.40	
3	24.08	0.001003	45.66402	45.66502	101.03	2307.48	2408.51	
4	28.96	0.001004	34.79915	34.80015	121.44	2293.73	2415.17	
5	32.88	0.001005	28.19150	28.19251	137.79	2282.70	2420.49	
7.5	40.29	0.001008	19.23674	19.23775	168.76	2261.74	2430.50	
10	45.81	0.001010	14.67254	14.67355	191.79	2246.10	2437.89	
15	53.97	0.001014	10.02117	10.02218	225.90	2222.83	2448.73	
20	60.06	0.001017	7.64835	7.64937	251.35	2205.36	2456.71	
25	64.97	0.001020	6.20322	6.20424	271.88	2191.21	2463.08	
30	69.10	0.001022	5.22816	5.22918	289.18	2179.22	2468.40	
40	75.87	0.001026	3.99243	3.99345	317.51	2159.49	2477.00	
50	81.33	0.001030	3.23931	3.24034	340.42	2143.43	2483.85	
75	91.77	0.001037	2.21607	2.21711	394.29	2112.39	2496.67	
100	99.62	0.001043	1.69296	1.69400	417.33	2088.72	2506.06	
125	105.99	0.001048	1.37385	1.37490	444.16	2069.32	2513.48	
150	111.37	0.001053	1.15828	1.15933	466.92	2052.72	2519.64	
175	116.06	0.001057	1.00257	1.00363	486.78	2038.12	2524.90	
200	120.23	0.001061	0.88467	0.88573	504.47	2025.02	2529.49	
225	124.00	0.001064	0.79219	0.79325	520.45	2013.10	2533.56	
250	127.43	0.001067	0.71765	0.71871	535.08	2002.14	2537.21	
275	130.60	0.001070	0.65624	0.65731	548.57	1991.95	2540.53	
300	133.55	0.001073	0.60475	0.60582	561.13	1982.43	2543.55	
325	136.30	0.001076	0.56093	0.56201	572.88	1973.46	2546.34	
350	138.88	0.001079	0.52317	0.52425	583.93	1964.98	2548.92	
375	141.32	0.001081	0.49029	0.49137	594.38	1956.93	2551.31	
400	143.63	0.001084	0.46138	0.46246	604.29	1949.26	2553.55	
450	147.93	0.001088	0.41289	0.41398	622.75	1934.87	2557.62	
500	151.86	0.001093	0.37380	0.37489	639.66	1921.57	2561.23	
550	155.48	0.001097	0.34159	0.34268	655.30	1909.17	2564.47	
600	158.85	0.001101	0.31457	0.31567	669.88	1897.52	2567.40	
650	162.01	0.001104	0.29158	0.29268	683.55	1886.51	2570.06	
700	164.97	0.001108	0.27176	0.27286	696.43	1876.07	2572.49	
750	167.77	0.001111	0.25449	0.25560	708.62	1866.11	2574.73	
800	170.43	0.001115	0.23931	0.24043	720.20	1856.58	2576.79	

 TABLE B.1.2 (continued)

 Saturated Water Pressure Entry

		H	Enthalpy, kJ/kg	g	Er	ntropy, kJ/kg-	K
Press.	Temp.	Sat. Liquid	Evap.	Sat. Vapor	Sat. Liquid	Evap.	Sat. Vapor
(kPa)	(°C)	hf	h _{fg}	h_g	S _f	Sfg	Sg
0.6113	0.01	0.00	2501.3	2501.3	0	9.1562	9.1562
1.0	6.98	29.29	2484.89	2514.18	0.1059	8.8697	8.9756
1.5	13.03	54.70	2470.59	2525.30	0.1956	8.6322	8.8278
2.0	17.50	73.47	2460.02	2533.49	0.2607	8.4629	8.7236
2.5	21.08	88.47	2451.56	2540.03	0.3120	8.3311	8.6431
3.0	24.08	101.03	2444.47	2545.50	0.3545	8.2231	8.5775
4.0	28.96	121.44	2432.93	2554.37	0.4226	8.0520	8.4746
5.0	32.88	137.79	2423.66	2561.45	0.4763	7.9187	8.3950
7.5	40.29	168.77	2406.02	2574.79	0.5763	7.6751	8.2514
10	45.81	191.81	2392.82	2584.63	0.6492	7.5010	8.1501
15	53.97	225.91	2373.14	2599.06	0.7548	7.2536	8.0084
20	60.06	251.38	2358.33	2609.70	0.8319	7.0766	7.9085
25	64.97	271.90	2346.29	2618.19	0.8930	6.9383	7.8313
30	69.10	289.21	2336.07	2625.28	0.9439	6.8247	7.7686
40	75.87	317.55	2319.19	2636.74	1.0258	6.6441	7.6700
50	81.33	340.47	2305.40	2645.87	1.0910	6.5029	7.5939
75	91.77	384.36	2278.59	2662.96	1.2129	6.2434	7.4563
100	99.62	417.44	2258.02	2675.46	1.3025	6.0568	7.3593
125	105.99	444.30	2241.05	2685.35	1.3739	5.9104	7.2843
150	111.37	467.08	2226.46	2693.54	1.4335	5.7897	7.2232
175	116.06	486.97	2213.57	2700.53	1.4848	5.6868	7.1717
200	120.23	504.68	2201.96	2706.63	1.5300	5.5970	7.1271
225	124.00	520.69	2191.35	2712.04	1.5705	5.5173	7.0878
250	127.43	535.34	2181.55	2716.89	1.6072	5.4455	7.0526
275	130.60	548.87	2172.42	2721.29	1.6407	5.3801	7.0208
300	133.55	561.45	2163.85	2725.30	1.6717	5.3201	6.9918
325	136.30	573.23	2155.76	2728.99	1.7005	5.2646	6.9651
350	138.88	584.31	2148.10	2732.40	1.7274	5.2130	6.9404
375	141.32	594.79	2140.79	2735.58	1.7527	5.1647	6.9174
400	143.63	604.73	2133.81	2738.53	1.7766	5.1193	6.8958
450	147.93	623.24	2120.67	2743.91	1.8206	5.0359	6.8565
500	151.86	640.21	2108.47	2748.67	1.8606	4.9606	6.8212
550	155.48	655.91	2097.04	2752.94	1.8972	4.8920	6.7892
600	158.85	670.54	2086.26	2756.80	1.9311	4.8289	6.7600
650	162.01	684.26	2076.04	2760.30	1.9627	4.7704	6.7330
700	164.97	697.20	2066.30	2763.50	1.9922	4.7158	6.7080
750	167.77	709.45	2056.98	2766.43	2.0199	4.6647	6.6846
800	170.43	721.10	2048.04	2769.13	2.0461	4.6166	6.6627

TABLE B.1.2 (continued)Saturated Water Pressure Entry

		Spec	ific Volume, m	³ /kg	Inte	rnal Energy, k	J/kg
Press.	Temp.	Sat. Liquid	Evap.	Sat. Vapor	Sat. Liquid	Evap.	Sat. Vapor
(kPa)	(°C)	Vſ	Vfg	Vg	<i>u_f</i>	u _{fg}	ug
850	172.96	0.001118	0.22586	0.22698	731.25	1847.45	2578.69
900	175.38	0.001121	0.21385	0.21497	741.81	1838.65	2580.46
950	177.69	0.001124	0.20306	0.20419	751.94	1830.17	2582.11
1000	179.91	0.001127	0.19332	0.19444	761.67	1821.97	2583.64
1100	184.09	0.001133	0.17639	0.17753	780.08	1806.32	2586.40
1200	187.99	0.001139	0.16220	0.16333	797.27	1791.55	2588.82
1300	191.64	0.001144	0.15011	0.15125	813.42	1777.53	2590.95
1400	195.07	0.001149	0.13969	0.14084	828.68	1764.15	2592.83
1500	198.32	0.001154	0.13062	0.13177	843.14	1751.3	2594.5
1750	205.76	0.001166	0.11232	0.11349	876.44	1721.39	2597.83
2000	212.42	0.001177	0.09845	0.09963	906.42	1693.84	2600.26
2250	218.45	0.001187	0.08756	0.08875	933.81	1668.18	2601.98
2500	223.99	0.001197	0.07878	0.07998	959.09	1644.04	2603.13
2750	229.12	0.001207	0.07154	0.07275	982.65	1621.16	2603.81
3000	233.90	0.001216	0.06546	0.06668	1004.76	1599.34	2604.10
3250	238.38	0.001226	0.06029	0.06152	1025.62	1578.43	2604.04
3500	242.60	0.001235	0.05583	0.05707	1045.41	1558.29	2603.70
4000	250.40	0.001252	0.04853	0.04978	1082.28	1519.99	2602.27
5000	263.99	0.001286	0.03815	0.03944	1147.78	1449.34	2597.12
6000	275.64	0.001319	0.03112	0.03244	1205.41	1384.27	2589.69
7000	285.88	0.001351	0.02602	0.02737	1257.51	1322.97	2580.48
8000	295.06	0.001384	0.02213	0.02352	1305.54	1264.25	2569.79
9000	303.40	0.001418	0.01907	0.02048	1350.47	1207.28	2557.75
10000	311.06	0.001452	0.01657	0.01803	1393.00	1151.40	2544.41
11000	318.15	0.001489	0.01450	0.01599	1433.68	1096.06	2529.74
12000	324.75	0.001527	0.01274	0.01426	1472.92	1040.76	2513.67
13000	330.93	0.001567	0.01121	0.01278	1511.09	984.99	2496.08
14000	336.75	0.001611	0.00987	0.01149	1548.53	928.23	2476.76
15000	342.24	0.001658	0.00868	0.01034	1585.58	869.85	2455.43
16000	347.43	0.001711	0.00760	0.00931	1622.63	809.07	2431.70
17000	352.37	0.001770	0.00659	0.00836	1660.16	744.80	2404.96
18000	357.06	0.001840	0.00565	0.00749	1698.86	675.42	2374.28
19000	361.54	0.001924	0.00473	0.00666	1739.87	598.18	2338.05
20000	365.81	0.002035	0.00380	0.00583	1785.47	507.58	2293.05
21000	369.89	0.002206	0.00275	0.00495	1841.97	388.74	2230.71
22000	373.80	0.002808	0.00072	0.00353	1973.16	108.24	2081.39
22089	374.14	0.003155	0	0.00315	2029.58	0	2029.58

TABLE B.1	.2 (continued	D)
Saturated	Иài	ter Pressu	re Entry

		1	Enthalpy, kJ/kg	1	E	ntropy, kJ/kg-	К
Press.	Temp.	Sat. Liquid	Evap.	Sat. Vapor	Sat. Liquid	Evap.	Sat. Vapo
(kPa)	(°C)	hr	hig	hg	S _f	Sig	Sg
850	172.96	732.20	2039.43	2771.63	2.0709	4.5711	6.6421
900	175.38	742.82	2031.12	2773.94	2.0946	4.5280	6.6225
950	177.69	753.00	2023.08	2776.08	2.1171	4.4869	6.6040
1000	179.91	762.79	2015.29	2778.08	2.1386	4.4478	6.5864
1100	184.09	781.32	2000.36	2781.68	2.1791	4.3744	6.5535
1200	187.99	798.64	1986.19	2784.82	2.2165	4.3067	6.5233
1300	191.64	814.91	1972.67	2787.58	2.2514	4.2438	6.4953
1400	195.07	830.29	1959.72	2790.00	2.2842	4.1850	6.4692
1500	198.32	844.87	1947.28	2792.15	2.3150	4.1298	6.4448
1750	205.76	878.48	1917.95	2796.43	2.3851	4.0044	6.3895
2000	212.42	908.77	1890.74	2799.51	2.4473	3.8935	6.3408
2250	218.45	936.48	1865.19	2801.67	2.5034	3.7938	6.2971
2500	223.99	962.09	1840.98	2803.07	2.5546	3.7028	6.2574
2750	229.12	985.97	1817.89	2803.86	2.6018	3.6190	6.2208
3000	233.90	1008.41	1795.73	2804.14	2.6456	3.5412	6.1869
3250	238.38	1029.60	1774.37	2803.97	2.6866	3.4685	6.1551
3500	242.60	1049.73	1753.70	2803.43	2.7252	3.4000	6.1252
4000	250.40	1087.29	1714.09	2801.38	2.7963	3.2737	6.0700
5000	263.99	1154.21	1640.12	2794.33	2.9201	3.0532	5.9733
6000	275.64	1213.32	1571.00	2784.33	3.0266	2.8625	5.8891
7000	285.88	1266.97	1505.10	2772.07	3.1210	2.6922	5.8132
8000	295.06	1316.61	1441.33	2757.94	3.2067	2.5365	5.7431
9000	303.40	1363.23	1378.88	2742.11	3.2857	2.3915	5.6771
10000	311.06	1407.53	1317.14	2724.67	3.3595	2.2545	5.6140
11000	318.15	1450.05	1255.55	2705.60	3.4294	2.1233	5.5527
12000	324.75	1491.24	1193.59	2684.83	3.4961	1.9962	5.4923
13000	330.93	1531.46	1130.76	2662.22	3.5604	1.8718	5.4323
14000	336.75	1571.08	1066.47	2637.55	3.6231	1.7485	5.3716
15000	342.24	1610.45	1000.04	2610.49	3.6847	1.6250	5.3097
16000	347.43	1650.00	930.59	2580.59	3.7460	1.4995	5.2454
17000	352.37	1690.25	856.90	2547.15	3.8078	1.3698	5.1776
18000	357.06	1731.97	777.13	2509.09	3.8713	1.2330	5.1044
19000	361.54	1776.43	688.11	2464.54	3.9387	1.0841	5.0227
20000	365.81	1826.18	583.56	2409.74	4.0137	0.9132	4.9269
21000	369.89	1888.30	446.42	2334.72	4.1073	0.6942	4.8015
22000	373.80	2034.92	124.04	2158.97	4.3307	0.1917	4.5224
22089	374.14	2099.26	0	2099.26	4.4297	0	4.4297

TABLE B.1.3 Superheated Vapor Water

Temp. (°C)	v (m ³ /kg)	<i>u</i> (kJ/kg)	<i>h</i> (kJ/kg)	<i>s</i> (kJ/kg-K)	v (m³/kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg-K)
		P = 10 kP	a (45.81°C)			P = 50 kP	a (81.33°C)	
Sat.	14.67355	2437.89	2584.63	8.1501	3.24034	2483.85	2645.87	7.5939
50	14.86920	2443.87	2592.56	8.1749	_	_	_	
100	17.19561	2515.50	2687.46	8.4479	3.41833	2511.61	2682.52	7.6947
150	19.51251	2587.86	2782.99	8.6881	3.88937	2585.61	2780.08	7.9400
200	21.82507	2661.27	2879.52	8.9037	4.35595	2659.85	2877.64	8.1579
250	24.13559	2735.95	2977.31	9.1002	4.82045	2734.97	2975.99	8.3555
300	26.44508	2812.06	3076.51	9.2812	5.28391	2811.33	3075.52	8.5372
400	31.06252	2968.89	3279.51	9.6076	6.20929	2968.43	3278.89	8.8641
500	35.67896	3132.26	3489.05	9.8977	7.13364	3131.94	3488.62	9.1545
600	40.29488	3302.45	3705.40	10.1608	8.05748	3302.22	3705.10	9.4177
700	44.91052	3479.63	3928.73	10.4028	8.98104	3479.45	3928.51	9.6599
800	49.52599	3663.84	4159.10	10.6281	9.90444	3663.70	4158.92	9.8852
900	54.14137	3855.03	4396.44	10.8395	10.82773	3854.91	4396.30	10.0967
1000	58.75669	4053.01	4640.58	11.0392	11.75097	4052.91	4640.46	10.2964
1100	63.37198	4257.47	4891.19	11.2287	12.67418	4257.37	4891.08	10.4858
1200	67.98724	4467.91	5147.78	11.4090	13.59737	4467.82	5147.69	10.6662
1300	72.60250	4683.68	5409.70	14.5810	14.52054	4683.58	5409.61	10.8382
		100 kPa	(99.62°C)			200 kPa ((120.23°C)	
Sat.	1.69400	2506.06	2675.46	7.3593	0.88573	2529.49	2706.63	7.1271
150	1.93636	2582.75	2776.38	7.6133	0.95964	2576.87	2768.80	7.2795
200	2.17226	2658.05	2875.27	7.8342	1.08034	2654.39	2870.46	7.5066
250	2.40604	2733.73	2974.33	8.0332	1.19880	2731.22	2970.98	7.7085
300	2.63876	2810.41	3074.28	8.2157	1.31616	2808.55	3071.79	7.8926
400	3.10263	2967.85	3278.11	8.5434	1.54930	2966.69	3276.55	8.2217
500	3.56547	3131.54	3488.09	8.8341	1.78139	3130.75	3487.03	8.5132
600	4.02781	3301.94	3704.72	9.0975	2.01297	3301.36	3703.96	8.7769
700	4.48986	3479.24	3928.23	9.3398	2.24426	3478.81	3927.66	9.0194
800	4.95174	3663.53	4158.71	9.5652	2.47539	3663.19	4158.27	9.2450
900	5.41353	3854.77	4396.12	9.7767	2.70643	3854.49	4395.77	9.4565
1000	5.87526	4052.78	4640.31	9.9764	2.93740	4052.53	4640.01	9.6563
1100	6.33696	4257.25	4890.95	10.1658	3.16834	4257.01	4890.68	9.8458
1200	6.79863	4467.70	5147.56	10.3462	3.39927	4467.46	5147.32	10.0262
1300	7.26030	4683.47	5409.49	10.5182	3.63018	4683.23	5409.26	10.1982
		300 kPa	(133.55°C)			400 kPa ((143.63°C)	
Sat.	0.60582	2543.55	2725.30	6.9918	0.46246	2553.55	2738.53	6.8958
150	0.63388	2570.79	2760.95	7.0778	0.47084	2564.48	2752.82	6.9299
200	0.71629	2650.65	2865.54	7.3115	0.53422	2646.83	2860.51	7.1706

TABLE B.1.3 (continued) Superheated Vapor Water

Temp. (°C)	v (m ³ /kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg-K)	v (m³/kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg-K)
		300 kPa	(133.55°C)			400 kPa (1	143.63°C)	
250	0.79636	2728.69	2967.59	7.5165	0.59512	2726.11	2964.16	7.3788
300	0.87529	2806.69	3069.28	7.7022	0.65484	2804.81	3066.75	7.5661
400	1.03151	2965.53	3274.98	8.0329	0.77262	2964.36	3273.41	7.8984
500	1.18669	3129.95	3485.96	8.3250	0.88934	3129.15	3484.89	8.1912
600	1.34136	3300.79	3703.20	8.5892	1.00555	3300.22	3702.44	8.4557
700	1.49573	3478.38	3927.10	8.8319	1.12147	3477.95	3926.53	8.6987
800	1.64994	3662.85	4157.83	9.0575	1.23722	3662.51	4157.40	8.9244
900	1.80406	3854.20	4395.42	9.2691	1.35288	3853.91	4395.06	9.1361
1000	1.95812	4052.27	4639.71	9.4689	1.46847	4052.02	4639.41	9.3360
1100	2.11214	4256.77	4890.41	9.6585	1.58404	4256.53	4890.15	9.5255
1200	2.26614	4467.23	5147.07	9.8389	1.69958	4466.99	5146.83	9.7059
1300	2.42013	4682.99	5409.03	10.0109	1.81511	4682.75	5408.80	9.8780
		500 kPa	(15 1.86°C)			600 kPa	(158.85°C)	
Sat.	0.37489	2561.23	2748.67	6.8212	0.31567	2567.40	2756.80	6.7600
200	0.42492	2642.91	2855.37	7.0592	0.35202	2638.91	2850.12	6.9665
250	0.47436	2723.50	2960.68	7.2708	0.39383	2720.86	2957.16	7.1816
300	0.52256	2802.91	3064.20	7.4598	0.43437	2801.00	3061.63	7.3723
350	0.57012	2882.59	3167.65	7.6328	0.47424	2881.12	3165.66	7.5463
400	0.61728	2963.19	3271.83	7.7937	0.51372	2962.02	3270.25	7.7078
500	0.71093	3128.35	3483.82	8.0872	0.59199	3127.55	3482.75	8.0020
600	0.80406	3299.64	3701.67	8.3521	0.66974	3299.07	3700.91	8.2673
700	0.89691	3477.52	3925.97	8.5952	0.74720	3477.08	3925.41	8.5107
800	0.98959	3662.17	4156.96	8.8211	0.82450	3661.83	4156.52	8.7367
900	1.08217	3853.63	4394.71	9.0329	0.90169	3853.34	4394.36	8.9485
1000	1.17469	4051.76	4639.11	9.2328	0.97883	4051.51	4638.81	9.1484
1100	1.26718	4256.29	4889.88	9.4224	1.05594	4256.05	4889.61	9.3381
1200	1.35964	4466.76	5146.58	9.6028	1.13302	4466.52	5146.34	9.5185
1300	1.45210	4682.52	5408.57	9.7749	1.21009	4682.28	5408.34	9.6906
		800 kPa	(170.43°C)			1000 kPa	(179.91°C)	
Sat.	0.24043	2576.79	2769.13	6.6627	0.19444	2583.64	2778.08	6.5864
200	0.26080	2630.61	2839.25	6.8158	0.20596	2621.90	2827.86	6.6939
250	0.29314	2715.46	2949.97	7.0384	0.23268	2709.91	2942.59	6.9246
300	0.32411	2797.14	3056.43	7.2327	0.25794	2793.21	3051.15	7.1228
350	0.35439	2878.16	3161.68	7.4088	0.28247	2875.18	3157.65	7.3010
400	0.38426	2959.66	3267.07	7.5715	0.30659	2957.29	3263.88	7.4650
500	0.44331	3125.95	3480.60	7.8672	0.35411	3124.34	3478.44	7.7621
600	0.50184	3297.91	3699.38	8.1332	0.40109	3296.76	3697.85	8.0289

TABLE B.1.3 (continued) Superheated Vapor Water

Temp. (°C)	v (m³/kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg-K)	v (m³/kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg-K)	
		800 kPa	(170.43°C)			1000 kPa	(179.91°C)		
700	0.56007	3476.22	3924.27	8.3770	0.44779	3475.35	3923.14	8.2731	
800	0.61813	3661.14	4155.65	8.6033	0.49432	3660.46	4154.78	8.4996	
900	0.67610	3852.77	4393.65	8.8153	0.54075	3852.19	4392.94	8.7118	
1000	0.73401	4051.00	4638.20	9.0153	0.58712	4050.49	4637.60	8.9119	
1100	0.79188	4255.57	4889.08	9.2049	0.63345	4255.09	4888.55	9.1016	
1200	0.84974	4466.05	5145.85	9.3854	0.67977	4465.58	5145.36	9.2821	
1300	0.90758	4681.81	5407.87	9.5575	0.72608	4681.33	5407.41	9.4542	
		1200 kPa	(187.99°C)			1400 kPa	(195.07°C)		
Sat.	0.16333	2588.82	2784.82	6.5233	0.14084	2592.83	2790.00	6.4692	
200	0.16930	2612.74	2815.90	6.5898	0.14302	2603.09	2803.32	6.4975	
250	0.19235	2704.20	2935.01	6.8293	0.16350	2698.32	2927.22	6.7467	
300	0.21382	2789.22	3045.80	7.0316	0.18228	2785.16	3040.35	6.9533	
350	0.23452	2872.16	3153.59	7.2120	0.20026	2869.12	3149.49	7.1359	
400	0.25480	2954.90	3260.66	7.3773	0.21780	2952.50	3257.42	7.3025	
500	0.29463	3122.72	3476.28	7.6758	0.25215	3121.10	3474.11	7.6026	
600	0.33393	3295.60	3696.32	7.9434	0.28596	3294.44	3694.78	7.8710	
700	0.37294	3474.48	3922.01	8.1881	0.31947	3473.61	3920.87	8.1160	
800	0.41177	3659.77	4153.90	8.4149	0.35281	3659.09	4153.03	8.3431	
900	0.45051	3851.62	4392.23	8.6272	0.38606	3851.05	4391.53	8.5555	
1000	0.48919	4049.98	4637.00	8.8274	0.41924	4049.47	4636.41	8.7558	
1100	0.52783	4254.61	4888.02	9.0171	0.45239	4254.14	4887.49	8.9456	
1200	0.56646	4465.12	5144.87	9.1977	0.48552	4464.65	5144.38	9.1262	
1300	0.60507	4680.86	5406.95	9.3698	0.51864	4680.39	5406.49	9.2983	
		1600 kPa	(201.40)°C)		1800 kPa (207.15°C)				
Sat.	0.12380	2595.95	2794.02	6.4217	0.11042	2598.38	2797.13	6.3793	
250	0.14184	2692.26	2919.20	6.6732	0.12497	2686.02	2910.96	6.6066	
300	0.15862	2781.03	3034.83	6.8844	0.14021	2776.83	3029.21	6.8226	
350	0.17456	2866.05	3145.35	7.0693	0.15457	2862.95	3141.18	7.0099	
400	0.19005	2950.09	3254.17	7.2373	0.16847	2947.66	3250.90	7.1793	
500	0.22029	3119.47	3471.93	7.5389	0.19550	3117.84	3469.75	7.4824	
600	0.24998	3293.27	3693.23	7.8080	0.22199	3292.10	3691.69	7.7523	
700	0.27937	3472.74	3919.73	8.0535	0.24818	3471.87	3918.59	7.9983	
800	0.30859	3658.40	4152.15	8.2808	0.27420	3657.71	4151.27	8.2258	
900	0.33772	3850.47	4390.82	8.4934	0.30012	3849.90	4390.11	8.4386	
1000	0.36678	4048.96	4635.81	8.6938	0.32598	4048.45	4635.21	8.6390	
1100	0.39581	4253.66	4886.95	8.8837	0.35180	4253.18	4886.42	8.8290	
1200	0.42482	4464.18	5143.89	9.0642	0.37761	4463.71	5143.40	9.0096	
1300	0.45382	4679.92	5406.02	9.2364	0.40340	4679.44	5405.56	9.1817	

TABLE B.1.3 (continued) Superheated Vapor Water

Temp. (°C)	v (m³/kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg-K)	<i>v</i> (m ³ /kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg-K)	
		2000 kPa	(212.42°C)		2500 kPa (223.99°C)				
Sat.	0.09963	2600.26	2799.51	6.3408	0.07998	2603.13	2803.07	6.2574	
250	0.11144	2679.58	2902.46	6.5452	0.08700	2662.55	2880.06	6.4084	
300	0.12547	2772.56	3023.50	6.7663	0.09890	2761.56	3008.81	6.6437	
350	0.13857	2859.81	3136.96	6.9562	0.10976	2851.84	3126.24	6.8402	
400	0.15120	2945.21	3247.60	7.1270	0.12010	2939.03	3239.28	7.0147	
450	0.16353	3030.41	3357.48	7.2844	0.13014	3025.43	3350.77	7.1745	
500	0.17568	3116.20	3467.55	7.4316	0.13998	3112.08	3462.04	7.3233	
600	0.19960	3290.93	3690.14	7.7023	0.15930	3287.99	3686.25	7.5960	
700	0.22323	3470.99	3917.45	7.9487	0.17832	3468.80	3914.59	7.8435	
800	0.24668	3657.03	4150.40	8.1766	0.19716	3655.30	4148.20	8.0720	
900	0.27004	3849.33	4389.40	8.3895	0.21590	3847.89	4387.64	8.2853	
1000	0.29333	4047.94	4634.61	8.5900	0.23458	4046.67	4633.12	8.4860	
1100	0.31659	4252.71	4885.89	8.7800	0.25322	4251.52	4884.57	8.6761	
1200	0.33984	4463.25	5142.92	8.9606	0.27185	4462.08	5141.70	8.8569	
1300	0.36306	4678.97	5405.10	9.1328	0.29046	4677.80	5403.95	9.0291	
		3000 kPa	(233.90°C)		4000 kPa (250.40°C)				
Sat.	0.06668	2604.10	2804.14	6.1869	0.04978	2602.27	2801.38	6.0700	
250	0.07058	2644.00	2855.75	6.2871	_	_	_	_	
300	0.08114	2750.05	2993.48	6.5389	0.05884	2725.33	2960.68	6.3614	
350	0.09053	2843.66	3115.25	6.7427	0.06645	2826.65	3092.43	6.5820	
400	0.09936	2932.75	3230.82	6.9211	0.07341	2919.88	3213.51	6.7689	
450	0.10787	3020.38	3344.00	7.0833	0.08003	3010.13	3330.23	6.9362	
500	0.11619	3107.92	3456.48	7.2337	0.08643	3099.49	3445.21	7.0900	
600	0.13243	3285.03	3682.34	7.5084	0.09885	3279.06	3674.44	7.3688	
700	0.14838	3466.59	3911.72	7.7571	0.11095	3462.15	3905.94	7.6198	
800	0.16414	3653.58	4146.00	7.9862	0.12287	3650.11	4141.59	7.8502	
900	0.17980	3846.46	4385.87	8.1999	0.13469	3843.59	4382.34	8.0647	
1000	0.19541	4045.40	4631.63	8.4009	0.14645	4042.87	4628.65	8.2661	
1100	0.21098	4250.33	4883.26	8.5911	0.15817	4247.96	4880.63	8.4566	
1200	0.22652	4460.92	5140.49	8.7719	0.16987	4458.60	5138.07	8.6376	
1300	0.24206	4676.63	5402.81	8.9442	0.18156	4674.29	5400.52	8.8099	

TABLE B.1.3 (continued) Superheated Vapor Water

Temp. (°C)	и (m ³ /kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg-K)	<i>v</i> (m³/kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg-K	
		5000 kPa	(263.99°C)		6000 kPa (275.64°C)				
Sat.	0.03944	2597.12	2794.33	5.9733	0.03244	2589.69	2784.33	5.8891	
300	0.04532	2697.94	2924.53	6.2083	0.03616	2667.22	2884.19	6.0673	
350	0.05194	2808.67	3068.39	6.4492	0.04223	2789.61	3042.97	6.3334	
400	0.05781	2906.58	3195.64	6.6458	0.04739	2892.81	3177.17	6.5407	
450	0.06330	2999.64	3316.15	6.8185	0.05214	2988.90	3301.76	6.7192	
500	0.06857	3090.92	3433.76	6.9758	0.05665	3082.20	3422.12	6.8802	
550	0.07368	3181.82	3550.23	7.1217	0.06101	3174.57	3540.62	7.0287	
600	0.07869	3273.01	3666.47	7.2588	0.06525	3266.89	3658.40	7.1676	
700	0.08849	3457.67	3900.13	7.5122	0.07352	3453.15	3894.28	7.4234	
800	0.09811	3646.62	4137.17	7.7440	0.08160	3643.12	4132.74	7.6566	
900	0.10762	3840.71	4378.82	7.9593	0.08958	3837.84	4375.29	7.8727	
1000	0.11707	4040.35	4625.69	8.1612	0.09749	4037.83	4622.74	8.0751	
1100	0.12648	4245.61	4878.02	8.3519	0.10536	4243.26	4875.42	8.2661	
1200	0.13587	4456.30	5135.67	8.5330	0.11321	4454.00	5133.28	8.4473	
1300	0.14526	4671.96	5398.24	8.7055	0.12106	4669.64	5395.97	8.6199	
		8000 kPa	(295.06°C)			10000 kPa	a (311.06°C)		
Sat.	0.02352	2569.79	2757.94	5.7431	0.01803	2544.41	2724.67	5.6140	
300	0.02426	2590.93	2784.98	5.7905		_			
350	0.02995	2747.67	2987.30	6.1300	0.02242	2699.16	2923.39	5.9442	
400	0.03432	2863.75	3138.28	6.3633	0.02641	2832.38	3096.46	6.2119	
450	0.03817	2966.66	3271.99	6.5550	0.02975	2943.32	3240.83	6.4189	
500	0.04175	3064.30	3398.27	6.7239	0.03279	3045.77	3373.63	6.5965	
550	0.04516	3159.76	3521.01	6.8778	0.03564	3144.54	3500.92	6.7561	
600	0.04845	3254.43	3642.03	7.0205	0.03837	3241.68	3625.34	6.9028	
700	0.05481	3444.00	3882.47	7.2812	0.04358	3434.72	3870.52	7.1687	
800	0.06097	3636.08	4123.84	7.5173	0.04859	3628.97	4114.91	7.4077	
900	0.06702	3832.08	4368.26	7.7350	0.05349	3826.32	4361.24	7.6272	
1000	0.07301	4032.81	4616.87	7.9384	0.05832	4027.81	4611.04	7.8315	
1100	0.07896	4238.60	4870.25	8.1299	0.06312	4233.97	4865.14	8.0236	
1200	0.08489	4449.45	5128.54	8.3115	0.06789	4444.93	5123.84	8.2054	
1300	0.09080	4665.02	5391.46	8.4842	0.07265	4660.44	5386.99	8.3783	

TABLE B.1.3 (continued) Superheated Vapor Water

Temp. (°C)	۲ (m ³ /kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg-K)	۲ (m ³ /kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg-K	
		15000 kPa	1 (342.24°C)		20000 kPa (365.81°C)				
Sat.	0.01034	2455.43	2610.49	5.3097	0.00583	2293.05	2409.74	4.9269	
350	0.01147	2520.36	2692.41	5.4420	_	_	_	_	
400	0.01565	2740.70	2975.44	5.8810	0.00994	2619.22	2818.07	5.5539	
450	0.01845	2879.47	3156.15	6.1403	0.01270	2806.16	3060.06	5.9016	
500	0.02080	2996.52	3308.53	6.3442	0.01477	2942.82	3238.18	6.1400	
550	0.02293	3104.71	3448.61	6.5198	0.01656	3062.34	3393.45	6.3347	
600	0.02491	3208.64	3582.30	6.6775	0.01818	3174.00	3537.57	6.5048	
650	0.02680	3310.37	3712.32	6.8223	0.01969	3281.46	3675.32	6.6582	
700	0.02861	3410.94	3840.12	6.9572	0.02113	3386.46	3809.09	6.7993	
800	0.03210	3610.99	4092.43	7.2040	0.02385	3592.73	4069.80	7.0544	
900	0.03546	3811.89	4343.75	7.4279	0.02645	3797.44	4326.37	7.2830	
1000	0.03875	4015.41	4596.63	7.6347	0.02897	4003.12	4582.45	7.4925	
1100	0.04200	4222.55	4852.56	7.8282	0.03145	4211.30	4840.24	7.6874	
1200	0.04523	4433.78	5112.27	8.0108	0.03391	4422.81	5100.96	7.8706	
1300	0.04845	4649.12	5375.94	8.1839	0.03636	4637.95	5365.10	8.0441	
		300	00 kPa			400	00 kPa		
375	0.001789	1737.75	1791.43	3.9303	0.001641	1677.09	1742.71	3.8289	
400	0.002790	2067.34	2151.04	4.4728	0.001908	1854.52	1930.83	4.1134	
425	0.005304	2455.06	2614.17	5.1503	0.002532	2096.83	2198.11	4.5028	
450	0.006735	2619.30	2821.35	5.4423	0.003693	2365.07	2512.79	4.9459	
500	0.008679	2820.67	3081.03	5.7904	0.005623	2678.36	2903.26	5.4699	
550	0.010168	2970.31	3275.36	6.0342	0.006984	2869.69	3149.05	5.7784	
600	0.011446	3100.53	3443.91	6.2330	0.008094	3022.61	3346.38	6.0113	
650	0.012596	3221.04	3598.93	6.4057	0.009064	3158.04	3520.58	6.2054	
700	0.013661	3335.84	3745.67	6.5606	0.009942	3283.63	3681.29	6.3750	
800	0.015623	3555.60	4024.31	6.8332	0.011523	3517.89	3978.80	6.6662	
900	0.017448	3768.48	4291.93	7.0717	0.012963	3739.42	4257.93	6.9150	
1000	0.019196	3978.79	4554.68	7.2867	0.014324	3954.64	4527.59	7.1356	
1100	0.020903	4189.18	4816.28	7.4845	0.015643	4167.38	4793.08	7.3364	
1200	0.022589	4401.29	5078.97	7.6691	0.016940	4380.11	5057.72	7.5224	
1300	0.024266	4615.96	5343.95	7.8432	0.018229	4594.28	5323.45	7.6969	

TABLE B.1.4 Compressed Liquid Water

Temp. (°C)	v (m ³ /kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg-K)	v (m ³ /kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg-K)	
		500 kPa	(151.86°C)		2000 kPa (212.42°C)				
Sat.	0.001093	639.66	640.21	1.8606	0.001177	906.42	908.77	2.4473	
0.01	0.000999	0.01	0.51	0.0000	0.000999	0.03	2.03	0.0001	
20	0.001002	83.91	84.41	0.2965	0.001001	83.82	85.82	.2962	
40	0.001008	167.47	167.98	0.5722	0.001007	167.29	169.30	.5716	
60	0.001017	251.00	251.51	0.8308	0.001016	250.73	252.77	.8300	
80	0.001029	334.73	335.24	1.0749	0.001028	334.38	336.44	1.0739	
100	0.001043	418.80	419.32	1.3065	0.001043	418.36	420.45	1.3053	
120	0.001060	503.37	503.90	1.5273	0.001059	502.84	504.96	1.5259	
140	0.001080	588.66	589.20	1.7389	0.001079	588.02	590.18	1.7373	
160	_	_	_	_	0.001101	674.14	676.34	1.9410	
180	_	_	_	_	0.001127	761.46	763.71	2.1382	
200	_	_	_	_	0.001156	850.30	852.61	2.3301	
		5000 kPa	(263.99°C)			10000 kPa	a (311.06°C)		
Sat	0.001286	1147.78	1154.21	2.9201	0.001452	1393.00	1407.53	3.3595	
0	0.000998	0.03	5.02	0.0001	0.000995	0.10	10.05	0.0003	
20	0.001000	83.64	88.64	0.2955	0.000997	83.35	93.32	0.2945	
40	0.001006	166.93	171.95	0.5705	0.001003	166.33	176.36	0.5685	
60	0.001015	250.21	255.28	0.8284	0.001013	249.34	259.47	0.8258	
80	0.001027	333.69	338.83	1.0719	0.001025	332.56	342.81	1.0687	
100	0.001041	417.50	422.71	1.3030	0.001039	416.09	426.48	1.2992	
120	0.001058	501.79	507.07	1.5232	0.001055	500.07	510.61	1.5188	
140	0.001077	586.74	592.13	1.7342	0.001074	584.67	595.40	1.7291	
160	0.001099	672.61	678.10	1.9374	0.001195	670.11	681.07	1.9316	
180	0.001124	759.62	765.24	2.1341	0.001120	756.63	767.83	2.1274	
200	0.001153	848.08	853.85	2.3254	0.001148	844.49	855.97	2.3178	
220	0.001187	938.43	944.36	2.5128	0.001181	934.07	945.88	2.5038	
240	0.001226	1031.34	1037.47	2.6978	0.001219	1025.94	1038.13	2.6872	
260	0.001275	1127.92	1134.30	2.8829	0.001265	1121.03	1133.68	2.8698	
280					0.001322	1220.90	1234.11	3.0547	
300					0.001397	1328.34	1342.31	3.2468	

TABLE B.1.4 (continued) Compressed Liquid Water

Тетр. (°С)	v (m³/kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg-K)	v (m³/kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg-K)
		15000 kPa	ı (342.24°C)			20000 kPa	ı (365.81°C)	
Sat.	0.001658	1585.58	1610.45	3.6847	0.002035	1785.47	1826.18	4.0137
0	0.000993	0.15	15.04	0.0004	0.000990	0.20	20.00	0.0004
20	0.000995	83.05	97.97	0.2934	0.000993	82.75	102.61	0.2922
40	0.001001	165.73	180.75	0.5665	0.000999	165.15	185.14	0.5646
60	0.001011	248.49	263.65	0.8231	0.001008	247.66	267.82	0.8205
80	0.001022	331.46	346.79	1.0655	0.001020	330.38	350.78	1.0623
100	0.001036	414.72	430.26	1.2954	0.001034	413.37	434.04	1.2917
120	0.001052	498.39	514.17	1.5144	0.001050	496.75	517.74	1.5101
140	0.001071	582.64	598.70	1.7241	0.001068	580.67	602.03	1.7192
160	0.001092	667.69	684.07	1.9259	0.001089	665.34	687.11	1.9203
180	0.001116	753.74	770.48	2.1209	0.001112	750.94	773.18	2.1146
200	0.001143	841.04	858.18	2.3103	0.001139	837.70	860.47	2.3031
220	0.001175	929.89	947.52	2.4952	0.001169	925.89	949.27	2.4869
240	0.001211	1020.82	1038.99	2.6770	0.001205	1015.94	1040.04	2.6673
260	0.001255	1114.59	1133.41	2.8575	0.001246	1108.53	1133.45	2.8459
280	0.001308	1212.47	1232.09	3.0392	0.001297	1204.69	1230.62	3.0248
300	0.001377	1316.58	1337.23	3.2259	0.001360	1306.10	1333.29	3.2071
320	0.001472	1431.05	1453.13	3.4246	0.001444	1415.66	1444.53	3.3978
340	0.001631	1567.42	1591.88	3.6545	0.001568	1539.64	1571.01	3.6074
360					0.001823	1702.78	1739.23	3.8770
		3000	00 kPa			5000)0 kPa	
0	0.000986	0.25	29.82	0.0001	0.000977	0.20	49.03	-0.0014
20	0.000989	82.16	111.82	0.2898	0.000980	80.98	130.00	0.2847
40	0.000995	164.01	193.87	0.5606	0.000987	161.84	211.20	0.5526
60	0.001004	246.03	276.16	0.8153	0.000996	242.96	292.77	0.8051
80	0.001016	328.28	358.75	1.0561	0.001007	324.32	374.68	1.0439
100	0.001029	410.76	441.63	1.2844	0.001020	405.86	456.87	1.2703
120	0.001044	493.58	524.91	1.5017	0.001035	487.63	539.37	1.4857
140	0.001062	576.86	608.73	1.7097	0.001052	569.76	622.33	1.6915
160	0.001082	660.81	693.27	1.9095	0.001070	652.39	705.91	1.8890
180	0.001105	745.57	778.71	2.1024	0.001091	735.68	790.24	2.0793
200	0.001130	831.34	865.24	2.2892	0.001115	819.73	875.46	2.2634
220	0.001159	918.32	953.09	2.4710	0.001141	904.67	961.71	2.4419
240	0.001192	1006.84	1042.60	2.6489	0.001170	990.69	1049.20	2.6158
260	0.001230	1097.38	1134.29	2.8242	0.001203	1078.06	1138.23	2.7860
280	0.001275	1190.69	1228.96	2.9985	0.001242	1167.19	1229.26	2.9536
300	0.001330	1287.89	1327.80	3.1740	0.001286	1258.66	1322.95	3.1200
320	0.001400	1390.64	1432.63	3.3538	0.001339	1353.23	1420.17	3.2867
340	0.001492	1501.71	1546.47	3.5425	0.001403	1451.91	1522.07	3.4556
360	0.001627	1626.57	1675.36	3.7492	0.001484	1555.97	1630.16	3.6290
380	0.001869	1781.35	1837.43	4.0010	0.001588	1667.13	1746.54	3.8100

TABLE B.2.1 Saturated Ammonia

		Spec	ific Volume, m	^a /kg	Inter	mal Energy, I	cJ/kg
Temp.	Press.	Sat. Liquid	Evap.	Sat. Vapor	Sat. Liquid	Evap.	Sat. Vapor
(°C)	(kPa)	V.	Vig	Vg	<i>u</i> ₁	u _{fg}	ug
-50	40.9	0.001424	2.62557	2.62700	-43.82	1309.1	1265.2
-45	54.5	0.001437	2.00489	2.00632	-22.01	1293.5	1271.4
-40	71.7	0.001450	1.55111	1.55256	-0.10	1277.6	1277.4
-35	93.2	0.001463	1.21466	1.21613	21.93	1261.3	1283.3
-30	119.5	0.001476	0.96192	0.96339	44.08	1244.8	1288.9
-25	151.6	0.001490	0.76970	0.77119	66.36	1227.9	1294.3
-20	190.2	0.001504	0.62184	0.62334	88.76	1210.7	1299.5
-15	236.3	0.001519	0.50686	0.50838	111.30	1193.2	1304.5
-10	290.9	0.001534	0.41655	0.41808	133.96	1175.2	1309.2
-5	354.9	0.001550	0.34493	0.34648	156.76	1157.0	1313.7
0	429.6	0.001566	0.28763	0.28920	179.69	1138.3	1318.0
5	515.9	0.001583	0.24140	0.24299	202.77	1119.2	1322.0
10	615.2	0.001600	0.20381	0.20541	225.99	1099.7	1325.7
15	728.6	0.001619	0.17300	0.17462	249.36	1079.7	1329.1
20	857.5	0.001638	0.14758	0.14922	272.89	1059.3	1332.2
25	1003.2	0.001658	0.12647	0.12813	296.59	1038.4	1335.0
30	1167.0	0.001680	0.10881	0.11049	320.46	1016.9	1337.4
35	1350.4	0.001702	0.09397	0.09567	344.50	994.9	1339.4
40	1554.9	0.001725	0.08141	0.08313	368.74	972.2	1341.0
45	1782.0	0.001750	0.07073	0.07248	393.19	948.9	1342.1
50	2033.1	0.001777	0.06159	0.06337	417.87	924.8	1342.7
55	2310.1	0.001804	0.05375	0.05555	442.79	899.9	1342.7
60	2614.4	0.001834	0.04697	0.04880	467.99	874.2	1342.1
65	2947.8	0.001866	0.04109	0.04296	493.51	847.4	1340.9
70	3312.0	0.001900	0.03597	0.03787	519.39	819.5	1338.9
75	3709.0	0.001937	0.03148	0.03341	545.70	790.4	1336.1
80	4140.5	0.001978	0.02753	0.02951	572.50	759.9	1332.4
85	4608.6	0.002022	0.02404	0.02606	599.90	727.8	1327.7
90	5115.3	0.002071	0.02093	0.02300	627.99	693.7	1321.7
95	5662.9	0.002126	0.01815	0.02028	656.95	657.4	1314.4
100	6253.7	0.002188	0.01565	0.01784	686.96	618.4	1305.3
105	6890.4	0.002261	0.01337	0.01564	718.30	575.9	1294.2
110	7575.7	0.002347	0.01128	0.01363	751.37	529.1	1280.5
115	8313.3	0.002452	0.00933	0.01178	786.82	476.2	1263.1
120	9107.2	0.002589	0.00744	0.01003	825.77	414.5	1240.3
125	9963.5	0.002783	0.00554	0.00833	870.69	337.7	1208.4
130	10891.6	0.003122	0.00337	0.00649	929.29	226.9	1156.2
132.3	11333.2	0.004255	0	0.00426	1037.62	0	1037.6

TABLE B.2.1 (continued) Saturated Ammonia

		E	nthalpy, kJ/k	g	Br	itropy, kJ/kg-	K
Temp. (°C)	Press. (kPa)	Sat. Liquid b ₁	Evap. h _{lg}	Sat. Vapor hg	Sat. Liquid	Evap. s _{fg}	Sat. Vapor sg
-50	40.9	-43.76	1416.3	1372.6	-0.1916	6.3470	6.1554
-45	54.5	-21.94	1402.8	1380.8	-0.0950	6.1484	6.0534
-40	71.7	0	1388.8	1388.8	0	5.9567	5.9567
-35	93.2	22.06	1374.5	1396.5	0.0935	5.7715	5.8650
-30	119.5	44.26	1359.8	1404.0	0.1856	5.5922	5.7778
-25	151.6	66.58	1344.6	1411.2	0.2763	5.4185	5.6947
-20	190.2	89.05	1329.0	1418.0	0.3657	5.2498	5.6155
-15	236.3	111.66	1312.9	1424.6	0.4538	5.0859	5.5397
-10	290.9	134.41	1296.4	1430.8	0.5408	4.9265	5.4673
-5	354.9	157.31	1279.4	1436.7	0.6266	4.7711	5.3977
0	429.6	180.36	1261.8	1442.2	0.7114	4.6195	5.3309
5	515.9	203.58	1243.7	1447.3	0.7951	4.4715	5.2666
10	615.2	226.97	1225.1	1452.0	0.8779	4.3266	5.2045
15	728.6	250.54	1205.8	1456.3	0.9598	4.1846	5.1444
20	857.5	274.30	1185.9	1460.2	1.0408	4.0452	5.0860
25	1003.2	298.25	1165.2	1463.5	1.1210	3.9083	5.0293
30	1167.0	322.42	1143.9	1466.3	1.2005	3.7734	4.9738
35	1350.4	346.80	1121.8	1468.6	1.2792	3.6403	4.9196
40	1554.9	371.43	1098.8	1470.2	1.3574	3.5088	4.8662
45	1782.0	396.31	1074.9	1471.2	1.4350	3.3786	4.8136
50	2033.1	421.48	1050.0	1471.5	1.5121	3.2493	4.7614
55	2310.1	446.96	1024.1	1471.0	1.5888	3.1208	4.7095
60	2614.4	472.79	997.0	1469.7	1.6652	2.9925	4.6577
65	2947.8	499.01	968.5	1467.5	1.7415	2.8642	4.6057
70	3312.0	525.69	938.7	1464.4	1.8178	2.7354	4.3533
75	3709.0	552.88	907.2	1460.1	1.8943	2.6058	4.5001
80	4140.5	580.69	873.9	1454.6	1.9712	2.4746	4.4458
85	4608.6	609.21	838.6	1447.8	2.0488	2.3413	4.3901
90	5115.3	638.59	800.8	1439.4	2.1273	2.2051	4.3325
95	5662.9	668.99	760.2	1429.2	2.2073	2.0650	4.2723
100	6253.7	700.64	716.2	1416.9	2.2893	1.9195	4.2088
105	6890.4	733.87	668.1	1402.0	2.3740	1.7667	4.1407
110	7575.7	769.15	614.6	1383.7	2.4625	1.6040	4.0665
115	8313.3	807.21	553.8	1361.0	2.5566	1.4267	3.9833
120	9107.2	849.36	482.3	1331.7	2.6593	1.2268	3.8861
125	9963.5	898.42	393.0	1291.4	2.7775	0.9870	3.7645
130	10892	963.29	263.7	1227.0	2.9326	0.6540	3.5866
132.3	11333	1085.85	0	1085.9	3.2316	0	3.2316

TABLE B.2.2 (continued) Superheated Ammonia

Temp. (°C)	г (m ³ /kg)	u (kJ/kg)	b (kJ/kg)	s (kJ/kg-K)	r (m³/kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg-K)
		50 kPa (-46.53°C)			100 kPa	(-33.60°C)	
Sat.	2.1752	1269.6	1378.3	6.0839	1.1381	1284.9	1398.7	5.8401
-30	2.3448	1296.2	1413.4	6.2333	1.1573	1291.0	1406.7	5.8734
-20	2.4463	1312.3	1434.6	6.3187	1.2101	1307.8	1428.8	5.9626
-10	2.5471	1328.4	1455.7	6.4006	1.2621	1324.6	1450.8	6.0477
0	2.6474	1344.5	1476.9	6.4795	1.3136	1341.3	1472.6	6.1291
10	2.7472	1360.7	1498.1	6.5556	1.3647	1357.9	1494.4	6.2073
20	2.8466	1377.0	1519.3	6.6293	1.4153	1374.5	1516.1	6.2826
30	2.9458	1393.3	1540.6	6.7008	1.4657	1391.2	1537.7	6.3553
40	3.0447	1409.8	1562.0	6.7703	1.5158	1407.9	1559.5	6.4258
50	3.1435	1426.3	1583.5	6.8379	1.5658	1424.7	1581.2	6.4943
60	3.2421	1443.0	1605.1	6.9038	1.6156	1441.5	1603.1	6.5609
70	3.3406	1459.9	1626.9	6.9682	1.6653	1458.5	1625.1	6.6258
80	3.4390	1476.9	1648.8	7.0312	1.7148	1475.6	1647.1	6.6892
100	3.6355	1511.4	1693.2	7.1533	1.8137	1510.3	1691.7	6.8120
120	3.8318	1546.6	1738.2	7.2708	1.9124	1545.7	1736.9	6.9300
140	4.0280	1582.5	1783.9	7.3842	2.0109	1581.7	1782.8	7.0439
160	4.2240	1619.2	1830.4	7.4941	2.1093	1618.5	1829.4	7.1540
180	4.4199	1656.7	1877.7	7.6008	2.2075	1656.0	1876.8	7.2609
200	4.6157	1694.9	1925.7	7.7045	2.3057	1694.3	1924.9	7.3648
		150 kPa	(-25.22°C)			200 kPa	(-18.86°C)	
Sat.	0.7787	1294.1	1410.9	5.6983	0.5946	1300.6	1419.6	5.5979
-20	0.7977	1303.3	1422.9	5.7465	_	_	_	_
-10	0.8336	1320.7	1445.7	5.8349	0.6193	1316.7	1440.6	5.6791
0	0.8689	1337.9	1468.3	5.9189	0.6465	1334.5	1463.8	5.7659
10	0.9037	1355.0	1490.6	5.9992	0.6732	1352.1	1486.8	5.8484
20	0.9382	1372.0	1512.8	6.0761	0.6995	1369.5	1509.4	5.9270
30	0.9723	1389.0	1534.9	6.1502	0.7255	1386.8	1531.9	6.0025
40	1.0062	1406.0	1556.9	6.2217	0.7513	1404.0	1554.3	6.0751
50	1.0398	1423.0	1578.9	6.2910	0.7769	1421.3	1576.6	6.1453
60	1.0734	1440.0	1601.0	6.3583	0.8023	1438.5	1598.9	6.2133
70	1.1068	1457.2	1623.2	6.4238	0.8275	1455.8	1621.3	6.2794
80	1.1401	1474.4	1645.4	6.4877	0.8527	1473.1	1643.7	6.3437
100	1.2065	1509.3	1690.2	6.6112	0.9028	1508.2	1688.8	6.4679
120	1.2726	1544.8	1735.6	6.7297	0.9527	1543.8	1734.4	6.5869
140	1.3386	1580.9	1781.7	6.8439	1.0024	1580.1	1780.6	6.7015
160	1.4044	1617.8	1828.4	6.9544	1.0519	1617.0	1827.4	6.8123
180	1.4701	1655.4	1875.9	7.0615	1.1014	1654.7	1875.0	6.9196
200	1.5357	1693.7	1924.1	7.1656	1.1507	1693.2	1923.3	7.0239
220	1.6013	1732.9	1973.1	7.2670	1.2000	1732.4	1972.4	7.1255

TABLE B.2.2 (continued) Superheated Ammonia

Temp. (°C)	и (m²/kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg-K)	r (m ³ /kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg-K)
		300 kPa	(-9.24°C)			400 kPa	(-1.89°C)	
Sat.	0.40607	1309.9	1431.7	5,4565	0.30942	1316.4	1440.2	5.3559
0	0.42382	1327.5	1454.7	5.5420	0.31227	1320.2	1445.1	5.3741
10	0.44251	1346.1	1478.9	5.6290	0.32701	1339.9	1470.7	5.4663
20	0.46077	1364.4	1502.6	5.7113	0.34129	1359.1	1495.6	5.5525
30	0.47870	1382.3	1526.0	5.7896	0.35520	1377.7	1519.8	5.6338
40	0.49636	1400.1	1549.0	5.8645	0.36884	1396.1	1543.6	5.7111
50	0.51382	1417.8	1571.9	5.9365	0.38226	1414.2	1567.1	5.7850
60	0.53111	1435.4	1594.7	6.0060	0.39550	1432.2	1590.4	5.8560
70	0.54827	1453.0	1617.5	6.0732	0.40860	1450.1	1613.6	5.9244
80	0.56532	1470.6	1640.2	6.1385	0.42160	1468.0	1636.7	5.9907
100	0.59916	1506.1	1685.8	6.2642	0.44732	1503.9	1682.8	6.1179
120	0.63276	1542.0	1731.8	6.3842	0.47279	1540.1	1729.2	6.2390
140	0.66618	1578.5	1778.3	6.4996	0.49808	1576.8	1776.0	6.3552
160	0.69946	1615.6	1825.4	6.6109	0.52323	1614.1	1823.4	6.4671
180	0.73263	1653.4	1873.2	6.7188	0.54827	1652.1	1871.4	6.5755
200	0.76572	1692.0	1921.7	6.8235	0.57321	1690.8	1920.1	6.6806
220	0.79872	1731.3	1970.9	6.9254	0.59809	1730.3	1969.5	6.7828
240	0.83167	1771.4	2020.9	7.0247	0.62289	1770.5	2019.6	6.8825
260	0.86455	1812.2	2071.6	7.1217	0.64764	1811.4	2070.5	6.9797
		500 kP	a (4.13°C)			600 kP	a (9.28°C)	
Sat.	0.25035	1321.3	1446.5	5.2776	0.21038	1325.2	1451.4	5.2133
10	0.25757	1333.5	1462.3	5.3340	0.21115	1326.7	1453.4	5.2205
20	0.26949	1353.6	1488.3	5.4244	0.22154	1347.9	1480.8	5.3156
30	0.28103	1373.0	1513.5	5.5090	0.23152	1368.2	1507.1	5.4037
40	0.29227	1392.0	1538.1	5.5889	0.24118	1387.8	1532.5	5.4862
50	0.30328	1410.6	1562.2	5.6647	0.25059	1406.9	1557.3	5.5641
60	0.31410	1429.0	1586.1	5.7373	0.25981	1425.7	1581.6	5.6383
70	0.32478	1447.3	1609.6	5.8070	0.26888	1444.3	1605.7	5.7094
80	0.33535	1465.4	1633.1	5.8744	0.27783	1462.8	1629.5	5.7778
100	0.35621	1501.7	1679.8	6.0031	0.29545	1499.5	1676.8	5.9081
120	0.37681	1538.2	1726.6	6.1253	0.31281	1536.3	1724.0	6.0314
140	0.39722	1575.2	1773.8	6.2422	0.32997	1573.5	1771.5	6.1491
160	0.41748	1612.7	1821.4	6.3548	0.34699	1611.2	1819.4	6.2623
180	0.43764	1650.8	1869.6	6.4636	0.36389	1649.5	1867.8	6.3717
200	0.45771	1689.6	1918.5	6.5691	0.38071	1688.5	1916.9	6.4776
220	0.47770	1729.2	1968.1	6.6717	0.39745	1728.2	1966.6	6.5806
240	0.49763	1769.5	2018.3	6.7717	0.41412	1768.6	2017.0	6.6808
260	0.51749	1810.6	2069.3	6.8692	0.43073	1809.8	2068.2	6.7786

TABLE B.2.2 (continued) Superheated Ammonia

Temp. (°C)	v (m ³ /kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg-K)	r (m ³ /kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg·K)	
		800 kPa	(17.85°C)		1000 kPa (24.90°C)				
Sat.	0.15958	1330.9	1458.6	5.1110	0.12852	1334.9	1463.4	5.0304	
20	0.16138	1335.8	1464.9	5.1328	_	_	_	_	
30	0.16947	1358.0	1493.5	5.2287	0.13206	1347.1	1479.1	5.0826	
40	0.17720	1379.0	1520.8	5.3171	0.13868	1369.8	1508.5	5.1778	
50	0.18465	1399.3	1547.0	5.3996	0.14499	1391.3	1536.3	5.2654	
60	0.19189	1419.0	1572.5	5.4774	0.15106	1412.1	1563.1	5.3471	
70	0.19896	1438.3	1597.5	5.5513	0.15695	1432.2	1589.1	5.4240	
80	0.20590	1457.4	1622.1	5.6219	0.16270	1451.9	1614.6	5.4971	
100	0.21949	1495.0	1670.6	5.7555	0.17389	1490.5	1664.3	5.6342	
120	0.23280	1532.5	1718.7	5.8811	0.18477	1528.6	1713.4	5.7622	
140	0.24590	1570.1	1766.9	6.0006	0.19545	1566.8	1762.2	5.8834	
160	0.25886	1608.2	1815.3	6.1150	0.20597	1605.2	1811.2	5.9992	
180	0.27170	1646.8	1864.2	6.2254	0.21638	1644.2	1860.5	6.1105	
200	0.28445	1686.1	1913.6	6.3322	0.22669	1683.7	1910.4	6.2182	
220	0.29712	1726.0	1963.7	6.4358	0.23693	1723.9	1960.8	6.3226	
240	0.30973	1766.7	2014.5	6.5367	0.24710	1764.8	2011.9	6.4241	
260	0.32228	1808.1	2065.9	6.6350	0.25720	1806.4	2063.6	6.5229	
280	0.33477	1850.2	2118.0	6.7310	0.26726	1848.8	2116.0	6.6194	
300	0.34722	1893.1	2170.9	6.8248	0.27726	1891.8	2169.1	6.7137	
		1200 kP	a (30.94°C)			1400 kP	a (36.26°C)		
Sat.	0.10751	1337.8	1466.8	4.9635	0.09231	1339.8	1469.0	4.9060	
40	0.11287	1360.0	1495.4	5.0564	0.09432	1349.5	1481.6	4.9463	
50	0.11846	1383.0	1525.1	5.1497	0.09942	1374.2	1513.4	5.0462	
60	0.12378	1404.8	1553.3	5.2357	0.10423	1397.2	1543.1	5.1370	
70	0.12890	1425.8	1580.5	5.3159	0.10882	1419.2	1571.5	5.2209	
80	0.13387	1446.2	1606.8	5.3916	0.11324	1440.3	1598.8	5.2994	
100	0.14347	1485.8	1658.0	5.5325	0.12172	1481.0	1651.4	5.4443	
120	0.15275	1524.7	1708.0	5.6631	0.12986	1520.7	1702.5	5.5775	
140	0.16181	1563.3	1757.5	5.7860	0.13777	1559.9	1752.8	5.7023	
160	0.17071	1602.2	1807.1	5.9031	0.14552	1599.2	1802.9	5.8208	
180	0.17950	1641.5	1856.9	6.0156	0.15315	1638.8	1853.2	5.9343	
200	0.18819	1681.3	1907.1	6.1241	0.16068	1678.9	1903.8	6.0437	
220	0.19680	1721.8	1957.9	6.2292	0.16813	1719.6	1955.0	6.1495	
240	0.20534	1762.9	2009.3	6.3313	0.17551	1761.0	2006.7	6.2523	
260	0.21382	1804.7	2061.3	6.4308	0.18283	1803.0	2059.0	6.3523	
280	0.22225	1847.3	2114.0	6.5278	0.19010	1845.8	2111.9	6.4498	
300	0.23063	1890.6	2167.3	6.6225	0.19732	1889.3	2165.5	6.5450	
320	0.23897	1934.6	2221.3	6.7151	0.20450	1933.5	2219.8	6.6380	

TABLE B.2.2 (continued) Superheated Ammonia

Temp. (°C)	r (m³/kg)	u (kJ/kg)	b (kJ/kg)	s (kJ/kg-K)	r (m³/kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg-K)
		1600 kP	a (41.03°C)			2000 kP	a (49.37°C)	
Sat.	0.08079	1341.2	1470.5	4.8553	0.06444	1342.6	1471.5	4.7680
50	0.08506	1364.9	1501.0	4.9510	0.06471	1344.5	1473.9	4.7754
60	0.08951	1389.3	1532.5	5.0472	0.06875	1372.3	1509.8	4.8848
70	0.09372	1412.3	1562.3	5.1351	0.07246	1397.8	1542.7	4.9821
80	0.09774	1434.3	1590.6	5.2167	0.07595	1421.6	1573.5	5.0707
100	0.10539	1476.2	1644.8	5.3659	0.08248	1466.1	1631.1	5.2294
120	0.11268	1516.6	1696.9	5.5018	0.08861	1508.3	1685.5	5.3714
140	0.11974	1556.4	1748.0	5.6286	0.09447	1549.3	1738.2	5.5022
160	0.12662	1596.1	1798.7	5.7485	0.10016	1589.9	1790.2	5.6251
180	0.13339	1636.1	1849.5	5.8631	0.10571	1630.6	1842.0	5.7420
200	0.14005	1676.5	1900.5	5.9734	0.11116	1671.6	1893.9	5.8540
220	0.14663	1717.4	1952.0	6.0800	0.11652	1713.1	1946.1	5.9621
240	0.15314	1759.0	2004.1	6.1834	0.12182	1755.2	1998.8	6.0668
260	0.15959	1801.3	2056.7	6.2839	0.12705	1797.9	2052.0	6.1685
280	0.16599	1844.3	2109.9	6.3819	0.13224	1841.3	2105.8	6.2675
300	0.17234	1888.0	2163.7	6.4775	0.13737	1885.4	2160.1	6.3641
320	0.17865	1932.4	2218.2	6.5710	0.14246	1930.2	2215.1	6.4583
340	0.18492	1977.5	2273.4	6.6624	0.14751	1975.6	2270.7	6.5505
360	0.19115	2023.3	2329.1	6.7519	0.15253	2021.8	2326.8	6.6406
		5000 kP:	a (88.90°C)			10000 kPs	a (125.20°C)	
Sat.	0.02365	1323.2	1441.4	4.3454	0.00826	1206.8	1289.4	3.7587
100	0.02636	1369.7	1501.5	4.5091	_	_	_	_
120	0.03024	1435.1	1586.3	4.7306	_	_	_	_
140	0.03350	1489.8	1657.3	4.9068	0.01195	1341.8	1461.3	4.1839
160	0.03643	1539.5	1721.7	5.0591	0.01461	1432.2	1578.3	4.4610
180	0.03916	1586.9	1782.7	5.1968	0.01666	1500.6	1667.2	4.6617
200	0.04174	1633.1	1841.8	5.3245	0.01842	1560.3	1744.5	4.8287
220	0.04422	1678.9	1900.0	5.4450	0.02001	1615.8	1816.0	4.9767
240	0.04662	1724.8	1957.9	5.5600	0.02150	1669.2	1884.2	5.1123
260	0.04895	1770.9	2015.6	5.6704	0.02290	1721.6	1950.6	5.2392
280	0.05123	1817.4	2073.6	5.7771	0.02424	1773.6	2015.9	5.3596
300	0.05346	1864.5	2131.8	5.8805	0.02552	1825.5	2080.7	5.4746
320	0.05565	1912.1	2190.3	5.9809	0.02676	1877.6	2145.2	5.5852
340	0.05779	1960.3	2249.2	6.0786	0.02796	1930.0	2209.6	5.6921
360	0.05990	2009.1	2308.6	6.1738	0.02913	1982.8	2274.1	5.7955
380	0.06198	2058.5	2368.4	6.2668	0.03026	2036.1	2338.7	5.8960
400	0.06403	2108.4	2428.6	6.3576	0.03137	2089.8	2403.5	5.9937
420	0.06606	2159.0	2489.3	6.4464	0.03245	2143.9	2468.5	6.0888
440	0.06806	2210.1	2550.4	6.5334	0.03351	2198.5	2533.7	6.1815

TABLE B.4.1 Saturated R-410a

		Spec	ific Volume, m	³/kg	Inter	nal Energy, k	J/kg
Temp.	Press.	Sat. Liquid	Evap.	Sat. Vapor	Sat. Liquid	Evap.	Sat. Vapor
(°C)	(kPa)	¥7	V Ig	V _S	u _f	u _{lg}	u _g
-60	64.1	0.000727	0.36772	0.36845	-27.50	256.41	228.91
-55	84.0	0.000735	0.28484	0.28558	-20.70	251.89	231.19
-51.4	101.3	0.000741	0.23875	0.23949	-15.78	248.59	232.81
-50	108.7	0.000743	0.22344	0.22418	-13.88	247.31	233.43
-45	138.8	0.000752	0.17729	0.17804	-7.02	242.67	235.64
-40	175.0	0.000762	0.14215	0.14291	-0.13	237.95	237.81
-35	218.4	0.000771	0.11505	0.11582	6.80	233.14	239.94
-30	269.6	0.000781	0.09392	0.09470	13.78	228.23	242.01
-25	329.7	0.000792	0.07726	0.07805	20.82	223.21	244.03
-20	399.6	0.000803	0.06400	0.06480	27.92	218.07	245.99
-15	480.4	0.000815	0.05334	0.05416	35.08	212.79	247.88
-10	573.1	0.000827	0.04470	0.04553	42.32	207.36	249.69
-5	678.9	0.000841	0.03764	0.03848	49.65	201.75	251.41
0	798.7	0.000855	0.03182	0.03267	57.07	195.95	253.02
5	933.9	0.000870	0.02699	0.02786	64.60	189.93	254.53
10	1085.7	0.000886	0.02295	0.02383	72.24	183.66	255.90
15	1255.4	0.000904	0.01955	0.02045	80.02	177.10	257.12
20	1444.2	0.000923	0.01666	0.01758	87.94	170.21	258.16
25	1653.6	0.000944	0.01420	0.01514	96.03	162.95	258.98
30	1885.1	0.000968	0.01208	0.01305	104.32	155.24	259.56
35	2140.2	0.000995	0.01025	0.01124	112.83	147.00	259.83
40	2420.7	0.001025	0.00865	0.00967	121.61	138.11	259.72
45	2728.3	0.001060	0.00723	0.00829	130.72	128.41	259.13
50	3065.2	0.001103	0.00597	0.00707	140.27	117.63	257.90
55	3433.7	0.001156	0.00482	0.00598	150.44	105.34	255.78
60	3836.9	0.001227	0.00374	0.00497	161.57	90.70	252.27
65	4278.3	0.001338	0.00265	0.00399	174.59	71.59	246.19
70	4763.1	0.001619	0.00124	0.00286	194.53	37.47	232.01
71.3	4901.2	0	0.00000	0.00218	215.78	0	215.78

TABLE B.4.1	(continued)
Saturated R-	410a

		E	nthalpy, kJ/k	8	Entropy, kJ/kg-K			
Temp. (°C)	Press. (kPa)	Sat. Liquid h7	Evap. h ₁₈	Sat. Vapor <i>hg</i>	Sat. Liquid S ₁	Evap. Sig	Sat. Vapor <i>sg</i>	
-60	64.1	-27.45	279.96	252.51	-0.1227	1.3135	1.1907	
-55	84.0	-20.64	275.83	255.19	-0.0912	1.2644	1.1732	
-51.4	101.3	-15.70	272.78	257.08	-0.0688	1.2301	1.1613	
-50	108.7	-13.80	271.60	257.80	-0.0603	1.2171	1.1568	
-45	138.8	-6.92	267.27	260.35	-0.0299	1.1715	1.1416	
-40	175.0	0.00	262.83	262.83	0.0000	1.1273	1.1273	
-35	218.4	6.97	258.26	265.23	0.0294	1.0844	1.1139	
-30	269.6	13.99	253.55	267.54	0.0585	1.0428	1.1012	
-25	329.7	21.08	248.69	269.77	0.0871	1.0022	1.0893	
-20	399.6	28.24	243.65	271.89	0.1154	0.9625	1.0779	
-15	480.4	35.47	238.42	273.90	0.1435	0.9236	1.0671	
-10	573.1	42.80	232.98	275.78	0.1713	0.8854	1.0567	
-5	678.9	50.22	227.31	277.53	0.1989	0.8477	1.0466	
0	798.7	57.76	221.37	279.12	0.2264	0.8104	1.0368	
5	933.9	65.41	215.13	280.55	0.2537	0.7734	1.0272	
10	1085.7	73.21	208.57	281.78	0.2810	0.7366	1.0176	
15	1255.4	81.15	201.64	282.79	0.3083	0.6998	1.0081	
20	1444.2	89.27	194.28	283.55	0.3357	0.6627	0.9984	
25	1653.6	97.59	186.43	284.02	0.3631	0.6253	0.9884	
30	1885.1	106.14	178.02	284.16	0.3908	0.5872	0.9781	
35	2140.2	114.95	168.94	283.89	0.4189	0.5482	0.9671	
40	2420.7	124.09	159.04	283.13	0.4473	0.5079	0.9552	
45	2728.3	133.61	148.14	281.76	0.4765	0.4656	0.9421	
50	3065.2	143.65	135.93	279.58	0.5067	0.4206	0.9273	
55	3433.7	154.41	121.89	276.30	0.5384	0.3715	0.9099	
60	3836.9	166.28	105.04	271.33	0.5729	0.3153	0.8882	
65	4278.3	180.32	82.95	263.26	0.6130	0.2453	0.8583	
70	4763.1	202.24	43.40	245.64	0.6752	0.1265	0.8017	
71.3	4901.2	226.46	0	226.46	0.7449	0	0.7449	

TABLE B.4.2 Superheated R-410a

Temp. (°C)	v (m ³ /kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg-K)	r (m³/kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg-K)		
		50 kPa (-64.34°C)		100 kPa (-51.65°C)					
Sat.	0.46484	226.90	250.15	1.2070	0.24247	232.70	256.94	1.1621		
-60	0.47585	229.60	253.40	1.2225	-	-	-	-		
-40	0.52508	241.94	268.20	1.2888	0.25778	240.40	266.18	1.2027		
-20	0.57295	254.51	283.16	1.3504	0.28289	253.44	281.73	1.2667		
0	0.62016	267.52	298.53	1.4088	0.30723	266.72	297.44	1.3265		
20	0.66698	281.05	314.40	1.4649	0.33116	280.42	313.54	1.3833		
40	0.71355	295.15	330.83	1.5191	0.35483	294.64	330.12	1.4380		
60	0.75995	309.84	347.83	1.5717	0.37833	309.40	347.24	1.4910		
80	0.80623	325.11	365.43	1.6230	0.40171	324.75	364.92	1.5425		
100	0.85243	340.99	383.61	1.6731	0.42500	340.67	383.17	1.5928		
120	0.89857	357.46	402.38	1.7221	0.44822	357.17	401.99	1.6419		
140	0.94465	374.50	421.74	1.7701	0.47140	374.25	421.39	1.6901		
160	0.99070	392.12	441.65	1.8171	0.49453	391.89	441.34	1.7372		
180	1.03671	410.28	462.12	1.8633	0.51764	410.07	461.84	1.7835		
200	1.08270	428.98	483.11	1.9087	0.54072	428.79	482.86	1.8289		
220	1.12867	448.19	504.63	1.9532	0.56378	448.02	504.40	1.8734		
240	1.17462	467.90	526.63	1.9969	0.58682	467.74	526.42	1.9172		
		150 kPa (-43.35°C)				200 kPa (-37.01°C)				
Sat.	0.16540	236.36	261.17	1.1368	0.12591	239.09	264.27	1.1192		
-40	0.16851	238.72	263.99	1.1489	_	_	_	-		
-20	0.18613	252.34	280.26	1.2159	0.13771	251.18	278.72	1.1783		
0	0.20289	265.90	296.33	1.2770	0.15070	265.06	295.20	1.2410		
20	0.21921	279.78	312.66	1.3347	0.16322	279.13	311.78	1.2995		
40	0.23525	294.12	329.40	1.3899	0.17545	293.59	328.68	1.3553		
60	0.25112	308.97	346.64	1.4433	0.18750	308.53	346.03	1.4090		
80	0.26686	324.37	364.40	1.4950	0.19943	324.00	363.89	1.4610		
100	0.28251	340.35	382.72	1.5455	0.21127	340.02	382.28	1.5117		
120	0.29810	356.89	401.60	1.5948	0.22305	356.60	401.21	1.5611		
140	0.31364	374.00	421.04	1.6430	0.23477	373.74	420.70	1.6094		
160	0.32915	391.66	441.03	1.6902	0.24645	391.43	440.72	1.6568		
180	0.34462	409.87	461.56	1.7366	0.25810	409.66	461.28	1.7032		
200	0.36006	428.60	482.61	1.7820	0.26973	428.41	482.35	1.7487		
220	0.37548	447.84	504.16	1.8266	0.28134	447.67	503.93	1.7933		
240	0.39089	467.58	526.21	1.8705	0.29293	467.41	526.00	1.8372		

TABLE B.4.2 (continued) Superheated R-410a

Temp. (°C)	и (m ³ /kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg-K)	r (m ³ /kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg-K		
	300 kPa (-27.37°C)					400 kPa (-19.98°C)				
Sat.	0.08548	243.08	268.72	1.0949	0.06475	246.00	271.90	1.0779		
-20	0.08916	248.71	275.46	1.1219	_	-	-	_		
0	0.09845	263.33	292.87	1.1881	0.07227	261.51	290.42	1.1483		
20	0.10720	277.81	309.96	1.2485	0.07916	276.44	308.10	1.2108		
40	0.11564	292.53	327.22	1.3054	0.08571	291.44	325.72	1.2689		
60	0.12388	307.65	344.81	1.3599	0.09207	306.75	343.58	1.3242		
80	0.13200	323.25	362.85	1.4125	0.09828	322.49	361.80	1.3773		
100	0.14003	339.37	381.38	1.4635	0.10440	338.72	380.48	1.4288		
120	0.14798	356.03	400.43	1.5132	0.11045	355.45	399.64	1.4788		
140	0.15589	373.23	420.00	1.5617	0.11645	372.72	419.30	1.5276		
160	0.16376	390.97	440.10	1.6093	0.12241	390.51	439.47	1.5752		
180	0.17159	409.24	460.72	1.6558	0.12834	408.82	460.16	1.6219		
200	0.17940	428.03	481.85	1.7014	0.13424	427.64	481.34	1.6676		
220	0.18719	447.31	503.47	1.7462	0.14012	446.96	503.01	1.7125		
240	0.19496	467.09	525.58	1.7901	0.14598	466.76	525.15	1.7565		
260	0.20272	487.33	548.15	1.8332	0.15182	487.03	547.76	1.7997		
280	0.21046	508.02	571.16	1.8756	0.15766	507.74	570.81	1.8422		
		500 kPa	(-13.89°C)		600 kPa (-8.67°C)					
Sat.	0.05208	248.29	274.33	1.0647	0.04351	250.15	276.26	1.0540		
0	0.05651	259.59	287.84	1.1155	0.04595	257.54	285.12	1.0869		
20	0.06231	275.02	306.18	1.1803	0.05106	273.56	304.20	1.1543		
40	0.06775	290.32	324.20	1.2398	0.05576	289.19	322.64	1.2152		
60	0.07297	305.84	342.32	1.2959	0.06023	304.91	341.05	1.2722		
80	0.07804	321.72	360.74	1.3496	0.06455	320.94	359.67	1.3265		
100	0.08302	338.05	379.56	1.4014	0.06877	337.38	378.65	1.3787		
120	0.08793	354.87	398.84	1.4517	0.07292	354.29	398.04	1.4294		
140	0.09279	372.20	418.60	1.5007	0.07701	371.68	417.89	1.4786		
160	0.09760	390.05	438.85	1.5486	0.08106	389.58	438.22	1.5266		
180	0.10238	408.40	459.59	1.5954	0.08508	407.98	459.03	1.5736		
200	0.10714	427.26	480.83	1.6413	0.08907	426.88	480.32	1.6196		
220	0.11187	446.61	502.55	1.6862	0.09304	446.26	502.08	1.6646		
240	0.11659	466.44	524.73	1.7303	0.09700	466.11	524.31	1.7088		
260	0.12129	486.73	547.37	1.7736	0.10093	486.42	546.98	1.7521		
280	0.12598	507.46	570.45	1.8161	0.10486	507.18	570.09	1.7947		
300	0.13066	528.62	593.95	1.8578	0.10877	528.36	593.62	1.8365		

TABLE B.4.2 (continued) Superheated R-410a

Temp. (°C)	и (m³/kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg-K)	и (m ³ /kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg-K)	
	800 kPa (0.05°C)				1000 kPa (7.25°C)				
Sat.	0.03262	253.04	279.14	1.0367	0.02596	255.16	281.12	1.0229	
20	0.03693	270.47	300.02	1.1105	0.02838	267.11	295.49	1.0730	
40	0.04074	286.83	319.42	1.1746	0.03170	284.35	316.05	1.1409	
60	0.04429	303.01	338.44	1.2334	0.03470	301.04	335.75	1.2019	
80	0.04767	319.36	357.49	1.2890	0.03753	317.73	355.27	1.2588	
100	0.05095	336.03	376.79	1.3421	0.04025	334.65	374.89	1.3128	
120	0.05415	353.11	396.42	1.3934	0.04288	351.91	394.79	1.3648	
140	0.05729	370.64	416.47	1.4431	0.04545	369.58	415.04	1.4150	
160	0.06039	388.65	436.96	1.4915	0.04798	387.70	435.68	1.4638	
180	0.06345	407.13	457.90	1.5388	0.05048	406.28	456.76	1.5113	
200	0.06649	426.10	479.30	1.5850	0.05294	425.33	478.27	1.5578	
220	0.06951	445.55	501.15	1.6302	0.05539	444.84	500.23	1.6032	
240	0.07251	465.46	523.46	1.6746	0.05781	464.80	522.62	1.6477	
260	0.07549	485.82	546.21	1.7181	0.06023	485.21	545.43	1.6914	
280	0.07846	506.61	569.38	1.7607	0.06262	506.05	568.67	1.7341	
300	0.08142	527.83	592.97	1.8026	0.06501	527.30	592.31	1.7761	
		1200 kP;	i (13.43°C)		1400 kPa (18.88°C)				
Sat.	0.02145	256.75	282.50	1.0111	0.01819	257.94	283.40	1.0006	
20	0.02260	263.39	290.51	1.0388	0.01838	259.18	284.90	1.0057	
40	0.02563	281.72	312.48	1.1113	0.02127	278.93	308.71	1.0843	
60	0.02830	299.00	332.96	1.1747	0.02371	296.88	330.07	1.1505	
80	0.03077	316.06	352.98	1.2331	0.02593	314.35	350.64	1.2105	
100	0.03311	333.24	372.97	1.2881	0.02801	331.80	371.01	1.2666	
120	0.03537	350.69	393.13	1.3408	0.03000	349.46	391.46	1.3199	
140	0.03756	368.51	413.59	1.3915	0.03192	367.43	412.13	1.3712	
160	0.03971	386.75	434.40	1.4407	0.03380	385.79	433.12	1.4208	
180	0.04183	405.43	455.62	1.4886	0.03565	404.56	454.47	1.4690	
200	0.04391	424.55	477.24	1.5353	0.03746	423.77	476.21	1.5160	
220	0.04597	444.12	499.29	1.5809	0.03925	443.41	498.36	1.5618	
240	0.04802	464.14	521.77	1.6256	0.04102	463.49	520.92	1.6066	
260	0.05005	484.60	544.66	1.6693	0.04278	483.99	543.88	1.6505	
280	0.05207	505.48	567.96	1.7122	0.04452	504.91	567.25	1.6936	
300	0.05407	526.77	591.66	1.7543	0.04626	526.25	591.01	1.7358	
320	0.05607	548.47	615.75	1.7956	0.04798	547.97	615.14	1.7772	

TABLE B.4.2 (continued) Superheated R-410a

Temp. (°C)	r (m³/kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg-K)	г (m ³ /kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg·K)		
	1800 kPa (28.22°C)					2000 kPa (32.31°C)				
Sat.	0.01376	259.38	284.15	0.9818	0.01218	259.72	284.09	0.9731		
40	0.01534	272.67	300.29	1.0344	0.01321	269.07	295.49	1.0099		
60	0.01754	292.34	323.92	1.1076	0.01536	289.90	320.62	1.0878		
80	0.01945	310.76	345.77	1.1713	0.01717	308.88	343.22	1.1537		
100	0.02119	328.84	366.98	1.2297	0.01880	327.30	364.91	1.2134		
120	0.02283	346.93	388.03	1.2847	0.02032	345.64	386.29	1.2693		
140	0.02441	365.24	409.17	1.3371	0.02177	364.12	407.66	1.3223		
160	0.02593	383.85	430.51	1.3875	0.02317	382.86	429.20	1.3732		
180	0.02741	402.82	452.16	1.4364	0.02452	401.94	450.99	1.4224		
200	0.02886	422.19	474.14	1.4839	0.02585	421.40	473.10	1.4701		
220	0.03029	441.97	496.49	1.5301	0.02715	441.25	495.55	1.5166		
240	0.03170	462.16	519.22	1.5753	0.02844	461.50	518.37	1.5619		
260	0.03309	482.77	542.34	1.6195	0.02970	482.16	541.56	1.6063		
280	0.03447	503.78	565.83	1.6627	0.03095	503.21	565.12	1.6497		
300	0.03584	525.19	589.70	1.7051	0.03220	524.66	589.05	1.6922		
320	0.03720	546.98	613.94	1.7467	0.03343	546.49	613.35	1.7338		
340	0.03855	569.15	638.54	1.7875	0.03465	568.69	637.99	1.7747		
		3000 kPa	a (49.07°C)		4000 kPa (61.90°C)					
Sat.	0.00729	258.19	280.06	0.9303	0.00460	250.37	268.76	0.8782		
60	0.00858	274.96	300.70	0.9933	_	-	-	-		
80	0.01025	298.38	329.12	1.0762	0.00661	285.02	311.48	1.0028		
100	0.01159	319.07	353.84	1.1443	0.00792	309.62	341.29	1.0850		
120	0.01277	338.84	377.16	1.2052	0.00897	331.39	367.29	1.1529		
140	0.01387	358.32	399.92	1.2617	0.00990	352.14	391.75	1.2136		
160	0.01489	377.80	422.49	1.3150	0.01076	372.51	415.53	1.2698		
180	0.01588	397.46	445.09	1.3661	0.01156	392.82	439.05	1.3229		
200	0.01683	417.37	467.85	1.4152	0.01232	413.25	462.52	1.3736		
220	0.01775	437.60	490.84	1.4628	0.01305	433.88	486.10	1.4224		
240	0.01865	458.16	514.11	1.5091	0.01377	454.79	509.85	1.4696		
260	0.01954	479.08	537.69	1.5541	0.01446	475.99	533.83	1.5155		
280	0.02041	500.37	561.59	1.5981	0.01514	497.51	558.08	1.5601		
300	0.02127	522.01	585.81	1.6411	0.01581	519.37	582.60	1.6037		
320	0.02212	544.02	610.37	1.6833	0.01647	541.55	607.42	1.6462		
340	0.02296	566.37	635.25	1.7245	0.01712	564.06	632.54	1.6879		
360	0.02379	589.07	660.45	1.7650	0.01776	586.90	657.95	1.7286		