PROGRAM : B.ING MECHANICAL ENGINEERING SCIENCE
SUBJECT : THERMAL SYSTEMS 4B
CODE : TML 4B
DATE : 12 November 2019
DURATION : (12:30) 3 HOURS
WEIGHT : 50:50
TOTAL MARKS : 100
EXAMINER : DR.S KRUGER
MODERATOR : PROF L PRETORIUS
NUMBER OF PAGES 4 PAGES AND 14 ANNEXURES

- 1700 m psychrometric chart
- Steam Tables
- R134a saturation tables
- R134a P-h Diagram
- Temperature-pressure concentration diagram of $\mathrm{LiBr}-$ water solution
- Enthalpy of LiBr water solutions

INSTRUCTIONS TO CANDIDATES:

PLEASE ANSWER ALL THE QUESTIONS.
SUBMIT YOUR PSHYCHROMETRIC CHART WITH THE ANSWER BOOK

QUESTION 1 [44]

A terminal-reheat air conditioning plant serving an office building is located at 1700 m above sea level. In the system $5 \mathrm{~m}^{3} / \mathrm{s}$ of outside air is mixed with $17 \mathrm{~m}^{3} / \mathrm{s}$ of return air. The dry bulb temperature of the outside air is $36^{\circ} \mathrm{C}$ with a relative humidity of 50%. The design condition for the controlled zones is a dry bulb temperature of $22^{\circ} \mathrm{C}$ and a relative humidity of 55%. The total sensible heat load in the controlled zones is 150 kW and the latent heat load is 75 kW .

The apparatus dew point temperature of the cooling coil is $6^{\circ} \mathrm{C}$. The temperature of the air after passing through the cooling coil is $13^{\circ} \mathrm{C}$. The re-heaters are also fitted with humidifiers.
1.1 Draw the process on a psychrometric chart.
1.2 Determine all the mixture properties
1.3 Calculate the cooling load of the cooling coil
1.4 Calculate the load of the heaters
1.5 Calculate the humidifier load
1.6 Calculate the rate at which water must be removed from the cooling coil
1.7 Determine the rate at which water is added to the system by the humidifiers

QUESTION 2 [11]

The temperature in a cold room is maintained at $1^{\circ} \mathrm{C}$, and the expected maximum temperature outside the room is $30^{\circ} \mathrm{C}$. The external dimensions of the room are $5 \mathrm{~m} \times 6 \mathrm{~m}$ and the height is 2.5 m . Three of the walls are fabricated with layers of polymer, polystyrene and steel, while one of the 5 m walls is comprised of a triple layer of glass with 13 mm air spaces. Thermal properties of the materials used are given in the table.
2.1 Calculate the overall heat transfer coefficient
2.2 If it can be assumed that the heat transferred out of the cold room through the roof and floor can be neglected, calculate:
a. The heat load due to heat transfer through the glass wall
b. The heat load due to heat transfer through the other three walls. The construction of the door is similar to that of the walls.
c. The total heat load

Material	Thickness $(\mathbf{m m})$	Thermal Conductivity $\mathbf{K}(\mathbf{W} / \mathbf{m K})$	$\mathbf{1} / \mathbf{R}$ $\left(\mathbf{W} / \mathbf{m}^{2} \mathbf{K}\right)$	\mathbf{U} $\left(\mathbf{W} / \mathbf{m}^{2} \mathbf{K}\right)$
Internal Air Film			4	
Polymer	20	0.5		
Polystyrene	50	0.04		
Steel	3	12	8	
External Air Film			1.8	
Triple Glass panes (including air spaces and films)				

QUESTION 3 [25]

Calculate the power requirement by the two compressors in a R-134a system which serves a 200 kW evaporator at $-15^{\circ} \mathrm{C}$ shown in Figure 1. The system uses two stage compression with intercooling and flash gas. The condensing temperature is $45^{\circ} \mathrm{C}$ and the compression is isentropic.

Figure 1
3.1 Draw the pressure-enthalpy diagram of the system
3.2 Calculate the intermediate pressure of the intercooler for optimum economy, which can be calculated from equation :

$$
P_{i}=\sqrt{p_{s} p_{d}}
$$

$p_{i}=$ intercooler pressure
$p_{s}=$ suction pressure of low stage compressor
$p_{d}=$ discharge pressure of high stage compressor
3.3 Determine all enthalpy values h_{1} to h_{7}
3.4 Determine the mass flow rate through the low stage compressor
3.5 Calculate the flow rate through the high stage compressor by means of the heat and mass balance around the intercooler
3.6 Determine the power requirement of the low and high stage Compressor and the total power for the system
3.7 Compare the power requirement to a single compressor system without inter-cooler

QUESTION 4 [20]

The following system temperatures apply to a LiBr water solution absorption refrigeration system:

Temperature in generator	$105^{\circ} \mathrm{C}$
Temperature in condenser	$45^{\circ} \mathrm{C}$
Temperature in evaporator	$3^{\circ} \mathrm{C}$
Temperature in absorber	$30^{\circ} \mathrm{C}$
The refrigeration capacity	300 kW

4.1 Calculate the flow rates of the system
4.2 Calculate all the heat transfers and COP of the system
4.3 If a heat exchanger is installed, calculate the outlet temperature from the heat exchanger of the flow of the flow to the generator from the heat exchanger if the COP is to be increased by 10%

FORMULA SHEET

$\dot{m}\left(h_{1}+\frac{V_{1}^{2}}{2}+g z_{1}\right)+\dot{Q}-\dot{m}\left(h_{2}+\frac{V_{2}^{2}}{2}+g z_{2}\right)-\dot{W}=\frac{d E}{d t}$
$h_{v} \cong h_{g}(T) \quad \begin{aligned} & h=h_{a}+W h_{v} \\ & h_{a}=C_{p a} t\end{aligned} \quad S H R=\frac{\dot{Q}_{S}}{\dot{Q}_{\text {Coil }}}=\frac{\dot{Q}_{S}}{\dot{Q}_{S}+\dot{Q}_{L}}$
$P_{S}=0.6105 e^{\frac{17.27 t}{337.3+t}}$

Contact Factor: $\quad(\beta)=\frac{\omega_{a}-\omega_{b}}{\omega_{a}-\omega_{c}}=\frac{h_{a}-h_{b}}{h_{a}-h_{c}}=\frac{t_{a}-t_{b}}{t_{a}-t_{c}}$
Bypass Factor: $\quad B P F=(1-\beta)=\frac{t_{b}-t_{c}}{P_{a}-P_{c}}$
$\frac{\dot{m}_{a 1}}{\dot{m}_{a 2}}=\frac{h_{2}-h_{3}}{h_{3}-h_{1}}=\frac{\omega^{2}}{\omega}$
$v=\frac{R_{a} T}{P_{a}}=\frac{R_{a} T}{P_{t}-P_{v}}$
$\omega=\frac{m_{v}}{m_{a}}$
$P=P_{a}+P_{v}$
$\phi=\frac{P_{v} / P}{P_{s} / P}=\frac{P_{v}}{P_{s}}$
$v=\frac{R_{a} T}{P_{a}}=\frac{R_{a} T}{P_{t}-P_{v}} \quad \omega=0.622 \frac{p_{v}}{\left(p_{t}-p_{v}\right)} \quad \frac{\dot{m}_{a 2}}{\dot{m}_{a 3}}=\frac{h_{3}-h_{1}}{h_{2}-h_{1}} \quad P_{s}=0.6105 e^{\frac{17.27 \times t}{237.3+t}}$
$P_{s}=0.6105 \mathrm{e}^{\frac{17.27 \mathrm{xt}}{23.3+t}} \mathrm{kPa} \quad: \mathrm{t}$ in ${ }^{\circ} \mathrm{C}$
$\mathrm{h}=1.005 \times \mathrm{t}+\omega \mathrm{h}_{g} \quad: \quad \mathrm{h}_{\mathrm{g}}=$ enthalpy of sat.steam at $\mathrm{t}^{\circ} \mathrm{C}$, t in ${ }^{\circ} \mathrm{C}$
$v=\frac{287 T}{p_{t}-p_{v}} \quad: T$ in K
$\mathrm{p}_{v}=\mathrm{p}_{s w}-\frac{1.8\left(p_{t}-p_{s w}\right)\left(t_{d b}-t_{w b}\right)}{2800-1.3 t_{w b}}$ or
$\mathrm{t}_{w b}=\frac{t_{d b}+\frac{2800}{1.8}\left(\frac{p_{v}-p_{s w}}{p_{t}-p_{s w}}\right)}{1+\frac{1.3}{1.8}\left(\frac{p_{v}-p_{s w}}{p_{t}-p_{s w}}\right)}$

Table 3 Thermodynamic Properties of Water at Saturation

Temp., ${ }^{\circ} \mathrm{C}$ t	Absolute Pressure $p_{w s} \mathrm{kPa}$	Specific Volume, $\mathbf{m}^{\mathbf{3} / \mathbf{k g}_{w}}$			Specific Enthalpy, kJ/kg ${ }_{w}$			Specific Entropy, $\mathbf{k J} /\left(\mathbf{k g}_{w} \cdot \mathrm{~K}\right)$			Temp., ${ }^{\circ} \mathrm{C}$ t
		$\begin{gathered} \text { Sat. Solid } \\ v_{i} / v_{f} \end{gathered}$	Evap. $\nu_{i g} / v_{f_{g}}$	$\begin{gathered} \text { Sat. Vapor } \\ v_{g} \end{gathered}$	$\begin{gathered} \hline \text { Sat. Solid } \\ h_{i} / h_{f} \end{gathered}$	$\begin{aligned} & \text { Evap. } \\ & h_{i g} / h_{f g} \end{aligned}$	$\begin{gathered} \text { Sat. Vapor } \\ h_{g} \end{gathered}$	$\begin{gathered} \hline \text { Sat. Solid } \\ s_{l} / s_{f} \end{gathered}$	Hvap. $s_{i g} / s_{f_{g}}$	$\begin{gathered} \text { Sat. Vapor } \\ s_{g} \end{gathered}$	
-60	0.00108	0.001081	90971.58	90971.58	-446.12	2836.27	2390.14	-1.6842	13.3064	11.6222	-60
59	0.00124	0.001082	79885.31	79885.31	444.46	2836.45	2391.99	1.6764	13.2452	11.5687	59
-58	0.00141	0.001082	70235.77	70235.78	-442.79	2836.63	2393.85	-1.6687	13.1845	11.5158	-58
-57	0.00161	0.001082	61826.23	61826.24	-441.11	2836.81	2395.70	-1.6609	13.1243	11.4634	-57
56	0.00184	0.001082	54488.28	54488.28	439.42	2836.97	2397.55	1.6531	13.0646	11.4115	56
55	0.00209	0.001082	48077.54	48077.54	437.73	2837.13	2399.40	1.6453	13.0054	11.3601	55
54	0.00238	0.001082	42470.11	42470.11	436.03	2837.28	2401.25	1.6375	12.9468	11.3092	54
-53	0.00271	0.001082	37559.49	37559.50	-434.32	2837.42	2403.10	-1.6298	12.8886	11.2589	-53
-52	0.00307	0.001083	33254.07	33254.07	-432.61	2837.56	2404.95	-1.6220	12.8310	11.2090	-52
-51	0.00348	0.001083	29474.87	29474.87	-430.88	2837.69	2406.81	-1.6142	12.7738	11.1596	-51
50	0.00394	0.001083	26153.80	26153.80	429.16	2837.81	2408.66	1.6065	12.7171	11.1106	50
49	0.00445	0.001083	23232.03	23232.04	427.42	2837.93	2410.51	1.5987	12.6609	11.0622	49
-48	0.00503	0.001083	20658.70	20658.70	-425.68	2838.04	2412.36	-1.5909	12.6051	11.0142	-48
47	0.00568	0.001083	18389.75	18389.75	423.93	2838.14	2414.21	1.5832	12.5498	10.9666	47
-46	0.00640	0.001083	16387.03	16387.03	-422.17	2838.23	2416.06	-1.5754	12.4950	10.9196	46
-45	0.00720	0.001084	14617.39	14617.39	-420.40	2838.32	2417.91	-1.5677	12.4406	10.8729	-45
44	0.00810	0.001084	13052.07	13052.07	418.63	2838.39	2419.76	1.5599	12.3867	10.8267	44
43	0.00910	0.001084	11666.02	11666.02	416.85	2838.47	2421.62	1.5522	12.3331	10.7810	43
-42	0.01022	0.001084	10437.46	10437.46	-415.06	2838.53	2423.47	-1.5444	12.2801	10.7356	-42
-41	0.01146	0.001084	9347.38	9347.38	-413.27	2838.59	2425.32	-1.5367	12.2274	10.6907	-41
-40	0.01284	0.001084	8379.20	8379.20	-411.47	2838.64	2427.17	-1.5289	12.1752	10.6462	-40
39	0.01437	0.001085	7518.44	7518.44	409.66	2838.68	2429.02	1.5212	12.1234	10.6022	39
38	0.01607	0.001085	6752.43	6752.43	407.85	2838.72	2430.87	1.5135	12.0720	10.5585	38
-37	0.01795	0.001085	6070.08	6070.08	-406.02	2838.74	2432.72	-1.5057	12.0210	10.5152	-37
-36	0.02004	0.001085	5461.68	5461.68	-404.19	2838.76	2434.57	-1.4980	11.9704	10.4724	-36
-35	0.02234	0.001085	4918.69	4918.69	-402.36	2838.78	2436.42	-1.4903	11.9202	10.4299	-35
-34	0.02489	0.001085	4433.64	4433.64	-400.51	2838.78	2438.27	-1.4825	11.8703	10.3878	-34
-33	0.02771	0.001085	3999.95	3999.95	-398.66	2838.78	2440.12	-1.4748	11.8209	10.3461	-33
32	0.03081	0.001086	3611.82	3611.82	396.80	2838.77	2441.97	1.4671	11.7718	10.3047	32
31	0.03423	0.001086	3264.15	3264.16	394.94	2838.75	2443.82	1.4594	11.7231	10.2638	31
-30	0.03801	0.001086	2952.46	2952.46	-393.06	2838.73	2445.67	-1.4516	11.6748	10.2232	-30
-29	0.04215	0.001086	2672.77	2672.77	-391.18	2838.70	2447.51	-1.4439	11.6269	10.1830	-29
-28	0.04672	0.001086	2421.58	2421.58	-389.29	2838.66	2449.36	-1.4362	11.5793	10.1431	-28
27	0.05173	0.001086	2195.80	2195.80	387.40	2838.61	2451.21	1.4285	11.5321	10.1036	27
26	0.05724	0.001087	1992.68	1992.68	385.50	2838.56	2453.06	1.4208	11.4852	10.0644	26
-25	0.06327	0.001087	1809.79	1809.79	-383.59	2838.49	2454.91	-1.4131	11.4386	10.0256	-25
24	0.06989	0.001087	1644.99	1644.99	381.67	2838.42	2456.75	1.4054	11.3925	9.9871	24
-23	0.07714	0.001087	1496.36	1496.36	-379.75	2838.35	2458.60	-1.3977	11.3466	9.9489	-23
-22	0.08508	0.001087	1362.21	1362.21	-377.81	2838.26	2460.45	-1.3899	11.3011	9.9111	-22
21	0.09376	0.001087	1241.03	1241.03	375.88	2838.17	2462.29	1.3822	11.2559	9.8736	21
20	0.10324	0.001087	1131.49	1131.49	373.93	2838.07	2464.14	1.3745	11.2110	9.8365	20
19	0.11360	0.001088	1032.38	1032.38	371.98	2837.96	2465.98	1.3668	11.1665	9.7996	19
-18	0.12490	0.001088	942.64	942.65	-370.01	2837.84	2467.83	-1.3591	11.1223	9.7631	-18
-17	0.13722	0.001088	861.34	861.34	-368.05	2837.72	2469.67	-1.3514	11.0784	9.7269	-17
16	0.15065	0.001088	787.61	787.61	366.07	2837.59	2471.51	1.3437	11.0348	9.6910	16
15	0.16527	0.001088	720.70	720.70	364.09	2837.45	2473.36	1.3360	10.9915	9.6554	15
-14	0.18119	0.001088	659.94	659.94	-362.10	2837.30	2475.20	-1.3284	10.9485	9.6201	-14
-13	0.19849	0.001089	604.72	604.73	-360.10	2837.14	2477.04	-1.3207	10.9058	9.5851	-13
12	0.21729	0.001089	554.51	554.51	358.10	2836.98	2478.88	1.3130	10.8634	9.5504	12
-11	0.23771	0.001089	508.81	508.81	-356.08	2836.80	2480.72	-1.3053	10.8213	9.5160	-11
10	0.25987	0.001089	467.19	467.19	354.06	2836.62	2482.56	1.2976	10.7795	9.4819	10
-9	0.28391	0.001089	429.25	429.26	-352.04	2836.44	2484.40	-1.2899	10.7380	9.4481	-9
8	0.30995	0.001089	394.66	394.66	350.00	2836.24	2486.23	1.2822	10.6967	9.4145	8
7	0.33817	0.001090	363.09	363.09	347.96	2836.03	2488.07	1.2745	10.6558	9.3812	7
-6	0.36871	0.001090	334.26	334.26	-345.91	2835.82	2489.91	-1.2668	10.6151	9.3482	-6
-5	0.40174	0.001090	307.92	307.92	-343.86	2835.60	2491.74	-1.2592	10.5747	9.3155	-5
4	0.43745	0.001090	283.82	283.83	341.79	2835.37	2493.57	1.2515	10.5345	9.2830	4
3	0.47604	0.001090	261.78	261.78	339.72	2835.13	2495.41	1.2438	10.4946	9.2508	3
-2	0.51770	0.001091	241.60	241.60	-337.64	2834.88	2497.24	-1.2361	10.4550	9.2189	-2
-1	0.56266	0.001091	223.10	223.11	-335.56	2834.63	2499.07	-1.2284	10.4157	9.1872	-1
0	0.61115	0.001091	206.15	206.15	-333.47	2834.36	2500.90	-1.2208	10.3766	9.1558	0
Transition from saturated solid to saturated liquid											
0	0.6112	0.001000	206.139	206.140	0.04	2500.93	2500.89	0.0002	9.1559	9.1558	0
1	0.6571	0.001000	192.444	192.445	4.18	2498.55	2502.73	0.0153	9.1138	9.1291	1
2	0.7060	0.001000	179.763	179.764	8.39	2496.17	2504.57	0.0306	9.0721	9.1027	2

Table 3 Thermodynamic Properties of Water at Saturation (Continued)

Temp., ${ }^{\circ} \mathrm{C}$ t	Absolute Pressure $p_{w,}, \mathbf{k P a}$	Specific Volume, $\mathbf{m}^{\mathbf{3} / \mathrm{kg}}{ }_{w}$			Specific Enthalpy, kJ/ $/ \mathrm{kg}_{w}$			Specific Entropy, $\mathbf{k J} /\left(\mathbf{k g}_{w} \cdot \mathrm{~K}\right)$			Temp., ${ }^{\circ} \mathrm{C}$ t
		$\begin{gathered} \hline \text { Sat. Liquid } \\ v_{i} / v_{f} \end{gathered}$	Evap. $v_{t g} / v_{f g}$	$\begin{gathered} \text { Sat. Vapor } \\ v_{g} \end{gathered}$	$\begin{gathered} \hline \text { Sat. Liquid } \\ h_{i} / h_{f} \end{gathered}$	Evap. $h_{i g} / h_{f g}$	$\begin{gathered} \text { Sat. Vapor } \\ \boldsymbol{h}_{\mathrm{g}} \end{gathered}$	$\overline{\text { Sat. }_{s_{i} / s_{f}}}$	Hvap. $s_{i g} / s_{f g}$	$\begin{gathered} \text { Sat. Vapor } \\ \mathbf{s}_{g} \end{gathered}$	
3	0.7581	0.001000	168.013	168.014	12.60	2493.80	2506.40	0.0459	9.0306	9.0765	3
4	0.8135	0.001000	157.120	157.121	16.81	2491.42	2508.24	0.0611	8.9895	9.0506	4
5	0.8726	0.001000	147.016	147.017	21.02	2489.05	2510.07	0.0763	8.9486	9.0249	5
6	0.9354	0.001000	137.637	137.638	25.22	2486.68	2511.91	0.0913	8.9081	8.9994	6
7	1.0021	0.001000	128.927	128.928	29.43	2484.31	2513.74	0.1064	8.8678	8.9742	7
8	1.0730	0.001000	120.833	120.834	33.63	2481.94	2515.57	0.1213	8.8278	8.9492	8
9	1.1483	0.001000	113.308	113.309	37.82	2479.58	2517.40	0.1362	8.7882	8.9244	9
10	1.2282	0.001000	106.308	106.309	42.02	2477.21	2519.23	0.1511	8.7488	8.8998	10
11	1.3129	0.001000	99.792	99.793	46.22	2474.84	2521.06	0.1659	8.7096	8.8755	11
12	1.4028	0.001001	93.723	93.724	50.41	2472.48	2522.89	0.1806	8.6708	8.8514	12
13	1.4981	0.001001	88.069	88.070	54.60	2470.11	2524.71	0.1953	8.6322	8.8275	13
14	1.5989	0.001001	82.797	82.798	58.79	2467.75	2526.54	0.2099	8.5939	8.8038	14
15	1.7057	0.001001	77.880	77.881	62.98	2465.38	2528.36	0.2245	8.5559	8.7804	15
16	1.8188	0.001001	73.290	73.291	67.17	2463.01	2530.19	0.2390	8.5181	8.7571	16
17	1.9383	0.001001	69.005	69.006	71.36	2460.65	2532.01	0.2534	8.4806	8.7341	17
18	2.0647	0.001001	65.002	65.003	75.55	2458.28	2533.83	0.2678	8.4434	8.7112	18
19	2.1982	0.001002	61.260	61.261	79.73	2455.92	2535.65	0.2822	8.4064	8.6886	19
20	2.3392	0.001002	57.760	57.761	83.92	2453.55	2537.47	0.2965	8.3696	8.6661	20
21	2.4881	0.001002	54.486	54.487	88.10	2451.18	2539.29	0.3108	8.3331	8.6439	21
22	2.6452	0.001002	51.421	51.422	92.29	2448.81	2541.10	0.3250	8.2969	8.6218	22
23	2.8109	0.001003	48.551	48.552	96.47	2446.45	2542.92	0.3391	8.2609	8.6000	23
24	2.9856	0.001003	45.862	45.863	100.66	2444.08	2544.73	0.3532	8.2251	8.5783	24
25	3.1697	0.001003	43.340	43.341	104.84	2441.71	2546.54	0.3673	8.1895	8.5568	25
26	3.3637	0.001003	40.976	40.977	109.02	2439.33	2548.35	0.3813	8.1542	8.5355	26
27	3.5679	0.001004	38.757	38.758	113.20	2436.96	2550.16	0.3952	8.1192	8.5144	27
28	3.7828	0.001004	36.674	36.675	117.38	2434.59	2551.97	0.4091	8.0843	8.4934	28
29	4.0089	0.001004	34.718	34.719	121.56	2432.21	2553.78	0.4230	8.0497	8.4727	29
30	4.2467	0.001004	32.881	32.882	125.75	2429.84	2555.58	0.4368	8.0153	8.4521	30
31	4.4966	0.001005	31.153	31.154	129.93	2427.46	2557.39	0.4506	7.9812	8.4317	31
32	4.7592	0.001005	29.528	29.529	134.11	2425.08	2559.19	0.4643	7.9472	8.4115	32
33	5.0351	0.001005	28.000	28.001	138.29	2422.70	2560.99	0.4780	7.9135	8.3914	33
34	5.3247	0.001006	26.561	26.562	142.47	2420.32	2562.79	0.4916	7.8800	8.3715	34
35	5.6286	0.001006	25.207	25.208	146.64	2417.94	2564.58	0.5052	7.8467	8.3518	35
36	5.9475	0.001006	23.931	23.932	150.82	2415.56	2566.38	0.5187	7.8136	8.3323	36
37	6.2818	0.001007	22.728	22.729	155.00	2413.17	2568.17	0.5322	7.7807	8.3129	37
38	6.6324	0.001007	21.594	21.595	159.18	2410.78	2569.96	0.5457	7.7480	8.2936	38
39	6.9997	0.001007	20.525	20.526	163.36	2408.39	2571.75	0.5591	7.7155	8.2746	39
40	7.3844	0.001008	19.516	19.517	167.54	2406.00	2573.54	0.5724	7.6832	8.2557	40
41	7.7873	0.001008	18.564	18.565	171.72	2403.61	2575.33	0.5858	7.6512	8.2369	41
42	8.2090	0.001009	17.664	17.665	175.90	2401.21	2577.11	0.5990	7.6193	8.2183	42
43	8.6503	0.001009	16.815	16.816	180.08	2398.82	2578.89	0.6123	7.5876	8.1999	43
44	9.1118	0.001009	16.012	16.013	184.26	2396.42	2580.67	0.6255	7.5561	8.1816	44
45	9.5944	0.001010	15.252	15.253	188.44	2394.02	2582.45	0.6386	7.5248	8.1634	45
46	10.0988	0.001010	14.534	14.535	192.62	2391.61	2584.23	0.6517	7.4937	8.1454	46
47	10.6259	0.001011	13.855	13.856	196.80	2389.21	2586.00	0.6648	7.4628	8.1276	47
48	11.1764	0.001011	13.212	13.213	200.98	2386.80	2587.77	0.6778	7.4320	8.1099	48
49	11.7512	0.001012	12.603	12.604	205.16	2384.39	2589.54	0.6908	7.4015	8.0923	49
50	12.3513	0.001012	12.027	12.028	209.34	2381.97	2591.31	0.7038	7.3711	8.0749	50
51	12.9774	0.001013	11.481	11.482	213.52	2379.56	2593.08	0.7167	7.3409	8.0576	51
52	13.6305	0.001013	10.963	10.964	217.70	2377.14	2594.84	0.7296	7.3109	8.0405	52
53	14.3116	0.001014	10.472	10.473	221.88	2374.72	2596.60	0.7424	7.2811	8.0235	53
54	15.0215	0.001014	10.006	10.007	226.06	2372.30	2598.35	0.7552	7.2514	8.0066	54
55	15.7614	0.001015	9.5639	9.5649	230.24	2369.87	2600.11	0.7680	7.2219	7.9899	55
56	16.5322	0.001015	9.1444	9.1454	234.42	2367.44	2601.86	0.7807	7.1926	7.9733	56
57	17.3350	0.001016	8.7461	8.7471	238.61	2365.01	2603.61	0.7934	7.1634	7.9568	57
58	18.1708	0.001016	8.3678	8.3688	242.79	2362.57	2605.36	0.8060	7.1344	7.9405	58
59	19.0407	0.001017	8.0083	8.0093	246.97	2360.13	2607.10	0.8186	7.1056	7.9243	59
60	19.9458	0.001017	7.6666	7.6677	251.15	2357.69	2608.85	0.8312	7.0770	7.9082	60
61	20.8873	0.001018	7.3418	7.3428	255.34	2355.25	2610.58	0.8438	7.0485	7.8922	61
62	21.8664	0.001018	7.0328	7.0338	259.52	2352.80	2612.32	0.8563	7.0201	7.8764	62
63	22.8842	0.001019	6.7389	6.7399	263.71	2350.35	2614.05	0.8687	6.9919	7.8607	63
64	23.9421	0.001019	6.4591	6.4601	267.89	2347.89	2615.78	0.8811	6.9639	7.8451	64
65	25.0411	0.001020	6.1928	6.1938	272.08	2345.43	2617.51	0.8935	6.9361	7.8296	65
66	26.1827	0.001020	5.9392	5.9402	276.27	2342.97	2619.23	0.9059	6.9083	7.8142	66
67	27.3680	0.001021	5.6976	5.6986	280.45	2340.50	2620.96	0.9182	6.8808	7.7990	67
68	28.5986	0.001022	5.4674	5.4684	284.64	2338.03	2622.67	0.9305	6.8534	7.7839	68
69	29.8756	0.001022	5.2479	5.2490	288.83	2335.56	2624.39	0.9428	6.8261	7.7689	69

Table 3 Thermodynamic Properties of Water at Saturation (Continued)

Temp., ${ }^{\circ} \mathrm{C}$ t	Absolute Pressure $p_{w, s} \mathbf{k P a}$	Specific Volume, $\mathbf{m}^{\mathbf{3} / \mathbf{k g}_{w}}$			Specific Enthalpy, kJ/kg ${ }_{w}$			Specific Entropy, $\mathbf{k J} /\left(\mathbf{k g}_{w} \cdot \mathrm{~K}\right)$			Temp., ${ }^{\circ} \mathrm{C}$ t
		Sat. Liquid v_{i} / v_{f}	Evap. $\nu_{i g} / v_{f_{6}}$	Sat. Vapor v_{g}	$\begin{gathered} \text { Sat. Liquid } \\ h_{i} / h_{f} \end{gathered}$	Evap. $h_{i g} / h_{f g}$	$\begin{gathered} \text { Sat. Vapor } \\ \boldsymbol{h}_{\mathrm{g}} \end{gathered}$	$\overline{\text { Sat. Liquid }_{s_{l} / s_{f}}}$	Evap. $\mathrm{s}_{i g} / \mathrm{s}_{\mathrm{fg}}$	$\begin{gathered} \text { Sat. Vapor } \\ s_{g} \end{gathered}$	
70	31.2006	0.001023	5.0387	5.0397	293.02	2333.08	2626.10	0.9550	6.7990	7.7540	70
71	32.5750	0.001023	4.8392	4.8402	297.21	2330.60	2627.81	0.9672	6.7720	7.7392	71
72	34.0001	0.001024	4.6488	4.6498	301.40	2328.11	2629.51	0.9793	6.7452	7.7245	72
73	35.4775	0.001025	4.4671	4.4681	305.59	2325.62	2631.21	0.9915	6.7185	7.7100	73
74	37.0088	0.001025	4.2937	4.2947	309.78	2323.13	2632.91	1.0035	6.6920	7.6955	74
75	38.5954	0.001026	4.1281	4.1291	313.97	2320.63	2634.60	1.0156	6.6656	7.6812	75
76	40.2389	0.001026	3.9699	3.9709	318.17	2318.13	2636.29	1.0276	6.6393	7.6669	76
77	41.9409	0.001027	3.8188	3.8198	322.36	2315.62	2637.98	1.0396	6.6132	7.6528	77
78	43.7031	0.001028	3.6743	3.6754	326.56	2313.11	2639.66	1.0516	6.5872	7.6388	78
79	45.5271	0.001028	3.5363	3.5373	330.75	2310.59	2641.34	1.0635	6.5613	7.6248	79
80	47.4147	0.001029	3.4042	3.4053	334.95	2308.07	2643.01	1.0754	6.5356	7.6110	80
81	49.3676	0.001030	3.2780	3.2790	339.15	2305.54	2644.68	1.0873	6.5100	7.5973	81
82	51.3875	0.001030	3.1572	3.1582	343.34	2303.01	2646.35	1.0991	6.4846	7.5837	82
83	53.4762	0.001031	3.0415	3.0426	347.54	2300.47	2648.01	1.1109	6.4592	7.5701	83
84	55.6355	0.001032	2.9309	2.9319	351.74	2297.93	2649.67	1.1227	6.4340	7.5567	84
85	57.8675	0.001032	2.8249	2.8259	355.95	2295.38	2651.33	1.1344	6.4090	7.5434	85
86	60.1738	0.001033	2.7234	2.7244	360.15	2292.83	2652.98	1.1461	6.3840	7.5301	86
87	62.5565	0.001034	2.6262	2.6272	364.35	2290.27	2654.62	1.1578	6.3592	7.5170	87
88	65.0174	0.001035	2.5330	2.5341	368.56	2287.70	2656.26	1.1694	6.3345	7.5039	88
89	67.5587	0.001035	2.4437	2.4448	372.76	2285.14	2657.90	1.1811	6.3099	7.4909	89
90	70.1824	0.001036	2.3581	2.3591	376.97	2282.56	2659.53	1.1927	6.2854	7.4781	90
91	72.8904	0.001037	2.2760	2.2771	381.18	2279.98	2661.16	1.2042	6.2611	7.4653	91
92	75.6849	0.001037	2.1973	2.1983	385.38	2277.39	2662.78	1.2158	6.2368	7.4526	92
93	78.5681	0.001038	2.1217	2.1228	389.59	2274.80	2664.39	1.2273	6.2127	7.4400	93
94	81.5420	0.001039	2.0492	2.0502	393.81	2272.20	2666.01	1.2387	6.1887	7.4275	94
95	84.6089	0.001040	1.9796	1.9806	398.02	2269.60	2667.61	1.2502	6.1648	7.4150	95
96	87.7711	0.001040	1.9128	1.9138	402.23	2266.98	2669.22	1.2616	6.1411	7.4027	96
97	91.0308	0.001041	1.8486	1.8497	406.45	2264.37	2670.81	1.2730	6.1174	7.3904	97
98	94.3902	0.001042	1.7870	1.7880	410.66	2261.74	2672.40	1.2844	6.0938	7.3782	98
99	97.8518	0.001043	1.7277	1.7288	414.88	2259.11	2673.99	1.2957	6.0704	7.3661	99
100	101.4180	0.001043	1.6708	1.6719	419.10	2256.47	2675.57	1.3070	6.0471	7.3541	
101	105.0910	0.001044	1.6161	1.6171	423.32	2253.83	2677.15	1.3183	6.0238	7.3421	101
102	108.8735	0.001045	1.5635	1.5645	427.54	2251.18	2678.72	1.3296	6.0007	7.3303	102
103	112.7678	0.001046	1.5129	1.5140	431.76	2248.52	2680.28	1.3408	5.9777	7.3185	103
104	116.7765	0.001047	1.4642	1.4653	435.99	2245.85	2681.84	1.3520	5.9548	7.3068	104
105	120.9021	0.001047	1.4174	1.4185	440.21	2243.18	2683.39	1.3632	5.9320	7.2951	105
106	125.1472	0.001048	1.3724	1.3734	444.44	2240.50	2684.94	1.3743	5.9092	7.2836	106
107	129.5145	0.001049	1.3290	1.3301	448.67	2237.81	2686.48	1.3854	5.8866	7.2721	107
108	134.0065	0.001050	1.2873	1.2883	452.90	2235.12	2688.02	1.3965	5.8641	7.2607	108
109	138.6261	0.001051	1.2471	1.2481	457.13	2232.41	2689.55	1.4076	5.8417	7.2493	109
110	143.3760	0.001052	1.2083	1.2094	461.36	2229.70	2691.07	1.4187	5.8194	7.2380	110
111	148.2588	0.001052	1.1710	1.1721	465.60	2226.99	2692.58	1.4297	5.7972	7.2268	111
112	153.2775	0.001053	1.1351	1.1362	469.83	2224.26	2694.09	1.4407	5.7750	7.2157	112
113	158.4348	0.001054	1.1005	1.1015	474.07	2221.53	2695.60	1.4517	5.7530	7.2047	113
114	163.7337	0.001055	1.0671	1.0681	478.31	2218.78	2697.09	1.4626	5.7310	7.1937	114
115	169.1770	0.001056	1.0349	1.0359	482.55	2216.03	2698.58	1.4735	5.7092	7.1827	115
116	174.7678	0.001057	1.0038	1.0049	486.80	2213.27	2700.07	1.4844	5.6874	7.1719	116
117	180.5090	0.001058	0.9739	0.9750	491.04	2210.51	2701.55	1.4953	5.6658	7.1611	117
118	186.4036	0.001059	0.9450	0.9461	495.29	2207.73	2703.02	1.5062	5.6442	7.1504	118
119	192.4547	0.001059	0.9171	0.9182	499.53	2204.94	2704.48	1.5170	5.6227	7.1397	119
120	198.6654	0.001060	0.8902	0.8913	503.78	2202.15	2705.93	1.5278	5.6013	7.1291	120
122	211.5782	0.001062	0.8392	0.8403	512.29	2196.53	2708.82	1.5494	5.5587	7.1081	122
124	225.1676	0.001064	0.7916	0.7927	520.80	2190.88	2711.69	1.5708	5.5165	7.0873	124
126	239.4597	0.001066	0.7472	0.7483	529.32	2185.19	2714.52	1.5922	5.4746	7.0668	126
128	254.4813	0.001068	0.7058	0.7068	537.85	2179.47	2717.32	1.6134	5.4330	7.0465	128
130	270.2596	0.001070	0.6670	0.6681	546.39	2173.70	2720.09	1.6346	5.3918	7.0264	130
132	286.8226	0.001072	0.6308	0.6318	554.93	2167.89	2722.83	1.6557	5.3508	7.0066	132
134	304.1989	0.001074	0.5969	0.5979	563.49	2162.04	2725.53	1.6767	5.3102	6.9869	134
136	322.4175	0.001076	0.5651	0.5662	572.05	2156.15	2728.20	1.6977	5.2698	6.9675	136
138	341.5081	0.001078	0.5353	0.5364	580.62	2150.22	2730.84	1.7185	5.2298	6.9483	138
140	361.5010	0.001080	0.5074	0.5085	589.20	2144.24	2733.44	1.7393	5.1900	6.9293	140
142	382.4271	0.001082	0.4813	0.4823	597.79	2138.22	2736.01	1.7600	5.1505	6.9105	142
144	404.3178	0.001084	0.4567	0.4577	606.39	2132.15	2738.54	1.7806	5.1112	6.8918	144
146	427.2053	0.001086	0.4336	0.4346	615.00	2126.04	2741.04	1.8011	5.0723	6.8734	146
148	451.1220	0.001088	0.4118	0.4129	623.62	2119.88	2743.50	1.8216	5.0335	6.8551	148
150	476.1014	0.001091	0.3914	0.3925	632.25	2113.67	2745.92	1.8420	4.9951	6.8370	150
152	502.1771	0.001093	0.3722	0.3733	640.89	2107.41	2748.30	1.8623	4.9569	6.8191	152
154	529.3834	0.001095	0.3541	0.3552	649.55	2101.10	2750.64	1.8825	4.9189	6.8014	154
156	557.7555	0.001097	0.3370	0.3381	658.21	2094.74	2752.95	1.9027	4.8811	6.7838	156
158	587.3287	0.001100	0.3209	0.3220	666.89	2088.32	2755.21	1.9228	4.8436	6.7664	158
160	618.1392	0.001102	0.3057	0.3068	675.57	2081.86	2757.43	1.9428	4.8063	6.7491	160

	号	\cdots		$\begin{aligned} & \text { Oncosto } \\ & \text { cos } \end{aligned}$		$\begin{aligned} & \text { OONNO } \\ & \text { 介OOO } \\ & 1011 \end{aligned}$	にホMN゙ 100000	gonano ：11：	nginn ッinnin	$\begin{aligned} & 0 \text { own } \\ & \cline { 2 - 4 } \\ & 10 \end{aligned}$
	立	$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 0 \\ & 0 \\ & 3 \end{aligned}$	NONOD Mamon ががもす。 $\infty \infty \infty$ －カーヴー	कNmON जm NTN以 $\cdots \infty$ जぃ $\infty+\infty$ H－NMr－	FqNOG MnNOM amomin $\infty \infty \infty$ 	ざのがいロ NONN －100 －∞ ぶゥーデゥ	N～Orn NNO日V Bovany あか人त 	minom जñinno $\infty \infty \infty \infty$ がが会 －rimini	べッグの品 ヘハーNの ットッド
	ㅍㅔㅔ	$\stackrel{7}{2}$	$\begin{aligned} & \text { 한 } \\ & \frac{3}{6} \\ & \hline \end{aligned}$	moNH Novon ペロ～が にいにない －0000＇	nowonn mavio monolin nnsuo 00000	MDONV MのM～ジ NNMEた 00006 00000°	ゆッチース nam゙か べッロット 010000 －0000	ninomur NMMOK 罗以णN 00000	＝H100－1 ざN心゚ロ －NNNM manNa 0000°	－ジがロ ำスペが m゙が保 MMNNR 20000°
		$\left\lvert\, \begin{aligned} & 5 \\ & x \\ & y \\ & y \end{aligned}\right.$		NMug かMOUN －••• moporis NNNNN	9nmHO －vorm in․ －NMms NNNNN	MOHMn ancimt जno NNN゙NN	mNにーか O゙MONJ゙ © かoico NNNNN	－1NMON Havoo －ininmi MOOMO	ザ－ Manno strio © NNNNN	ํovinu －0． mo NONNN
				minnato NNNH2 ヘッドゥ ongor N゙NNNN	mmeoom －17000 mirno －ovint NNN゙N NNNNN	O～ホOO 090an － すmmN゙ NNNNN		90700 NGON： minnion mmmm NNNNN	MNDON Ningm nはmiñ mmmmm NNNNN	$\begin{aligned} & \text { moñN } \\ & -10 N 0 \\ & \text { N. } \\ & \text { NNON } \\ & \text { NNNN } \end{aligned}$
			$\stackrel{\square}{\square}$	மッホO riónim ：	がざいい minaraj 	ornano Momomin cimivin randian	からmba ornmo ーのN゙か 	Nへmom Nんのmio がットロロ Nが倍 NENNNT	moNNOM －minmo かcing तलmmm	かuにに NnNom niongo mmmmy
		$\stackrel{\infty}{E}$	$\begin{aligned} & 5 \\ & 0 \\ & 0 \\ & \\ & \end{aligned}$	OnNOM がッグッ NNNNM $00^{\circ \circ}$	～manr のnN．N． moms $00^{\circ} 0^{\circ}$	$m+4 x^{2}+\pi$ जがNM ＊ऊnnum $00^{\circ 0} 0^{\circ}$	以unaro NON゙웅 －Nかめ $00^{\circ \circ}$	NNOGI グがごッ のonotr óciniデ	－ かめ心ロ Nmmo rininiais	오NデN․ ローデMN じべかめ゙が がいいが
		$\underset{x}{\underset{x}{x}}$	范	－nnocto NHNOM mintuns 	NOONm rioymo numbun －iñini	M以のmロ MnNON ononom ざばざ， नindmel	Omuom NNOAN がが， がぎざ 	ロのNにあ －106MO がずッオ लiriniनi	ががのN かincor いびいた －iनलージ	テーarm $\ddagger \rightarrow \infty 6 m$ すかmm － かMrncr
?	$\frac{\stackrel{y}{5}}{5}$			ONana NMDN －Niñmin GiNerib Natosm	Dowmm Dmormo かめMが デがが gnッMN	Noum ๗mainio にのMNa o Nợin ～－゙が	Nmenm －immon －－NNON ∞ OONF जmmen	－100wm －HMN゙ ©ペ～N oninon 0000∞ ＂内000	ascoron NOMO mmu゙no －N－N 00000	armab ごMN゙N がすくか $00^{\circ} 0^{\circ}$
				のボッペ ーN゙ジロ足式男沼 ゆゆゃんに $00^{\circ \circ}$	mnNMm －worm WNOLNO 10000 00000	ausmin － 6ound 0100 －0000	NN二゙い $\mathfrak{v i n O N}$ べッグか人60060 00000	NNNGN にNONH OONmJ 0 00w 000°	NEagO ががOO 00600 20000	NGwern No Nom onorono 00000 00000°
				いーのが MONHE がづ以 00000 0000°	Mッロ人 いがmm以noun 00000 0000°	NMーが心 そningue －\rightarrow ono －000 00000	Nば系品 ＂nionco －NMm －－M－～ 00000	ごい゙らいが かのONG ท゙ロがす。 M－1man 00000	－0000 が心この －M．0～ N～NNN 00000	nm入かの NTぶロ ずローが Nmmmm 00000
	言			いにがいい 7ットリーツ mivion o．00000 	びいいにか cronN 90000 MANN	がいいいい ㄱ․․․․ manor NOCDN	いいいいに －Mーッ morncm 으NNN	がいいいち －rander monos NヘNNN	いいいがの ックット・•• © 0 O－N MNNNN	のいいいにし minion NNNNN NNNNN

October/Wovember 2005

[TURN OVER]
vil
RFR371.S
October Wovember 2005

[TURN OVER]

Lithium bromide in solution, \% by mass
Figure 17-5 Temperature-pressure-concentration diagram of saturated LiBr -water solutions, developed from data in Ref. 1.

Figure 17-8 Enthalpy of LiBr-water solutions; data from Ref. 1.

