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INSTRUCTIONS TO CANDIDATES:

Notes
1. Answer ALL questions
2. This paper contains 5 questions
3. Number all answers according to the numbering in the question paper.
4. Make sure that you understand what the question requires before attempting it.
5. Draw proper sketches where required with all relevant information
6. No pencil work will be marked. Please use pen for parts to be marked.
7. Answer all questions in English.
8. Explain answers and give all the necessary steps — simply giving the answer is
not sufficient
Question 1 — Dynamic system modelling and state-space representation 20)

In some mechanical positioning systems, the movement of a large object is controlled by
manipulating a much smaller object that is mechanically coupled with it. The following
diagram, Figure 1, depicts such a system, where a force u(t) is applied to a small mass m in
order to position a larger mass M: The coupling between the objects is modeled by a spring
constant k with a damping coefficient b.
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Figure 1(a)
a) Draw the free-body diagrams of the system. 3)
b) Write the equations of motion governing this system. 2)
¢) Identify the appropriate state variables and express the equations of motion in the state-
variable matrix form (A, B, C, D). &)

d) Consider the translational mechanical system shown in Figure 1(b). Find the transfer
function model:

X
G(s) = % (5)

—t—= x(1)
4 N-s/m . 5 N/m
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Figure 1(b)



e) For the system described by the following transfer function model derive the state
variable model:

75+6
G(s) =—— 5
(s) 13s3+10s2 )
Question 2 — Closed-loop system transfer function and the system response 20)
Input
transducer Controller Plant
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(error)
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Feedback Output
transducer
Figure 2

Consider the general (negative or positive) feedback control system illustrated in Figure 2.

a) Show that the closed-loop transfer function of the general negative feedback control
system is given by
c(s)
T(s) =—=
() =25
(5)
G1(s)G2(5)G3(s)

T 1+ G,(5)G3(s)Hy (5)Hy (5)

b) For the special case of (a) where:
Gi(s) = Hi(s) = 1, Go(s) =K, Gs(s) = G(s) and H:(s) = H(s),
Deduce a simplified expression for 7(s) and draw the corresponding block diagram. (2)

¢) For a special case of (b) where H(s) = 1, deduce a further simplified expression for 7(s)
and draw the corresponding block diagram. What name is given to such a control
system? (2)

d) For the system in (c) if

K =36 and G(S) =S(S—+6)



Find wy,, ¢, T, and Ty. )

e) For a more general system

KG(s) = ———

(s) s(s+6)
Design the controller K so that the system responds with 15% overshoot. 4)
Question 3 — Cascade controller (PI, PD, and PID) design (20)

Consider a system whose plant transfer function is given by

K
6O = Eeman

In a unity feedback arrangement with a controller D(s) (i.e., a cascade compensator), a damping
ratio of 0.5 and a step input;

a) Find the steady-state error for the uncompensated system. &)
b) Show that a PI controller, D(s) = 1+ % will drive the steady-state step response error

to zero. (5)
¢) Explain the impact of the PI controller on the transient response. ®)]

d) From first principles show that the PID Controller has two zeros defined by

o I\P;J Il_;
5 + — &5 4+ — = [)
Kp Kp (3)
Question 4 — Frequency response design methods as)

For a system whose plant transfer function is given by

__2s5+2
G(s) = s+10
a) Draw the Bode plots (magnitude and phase angle) for the system. (10)
b) Ifthere is a time delay of one second through the system, how does that affect the Bode
plots. (5)
Question 5 — State-space representation and design via state-space 25)

A state-space system is represented as follows:

X = Ax + Bu
y = Cx+ Du

Given that



a)
b)
c)

d)

0 1 0 0
A=10 0 1 B=10

-6 —-11 -6 1
C=1[6 2 0] D =0;

Explain the concepts of controllability and observability
Evaluate the controllability and observability of the system
Show that the system’s transfer function is given by

T(s) =

5243s5+2°

(5)
(10)

(7

Explain the significance of the pole-zero cancellations involved in the

derivation of T(s).

€)



APPENDIX A: SOME CONTROL SYSTEM FORMULAE
SYSTEM TRANSFER FUNCTION
T(s)= C(sI — A)"'B+D.
CONTROLLABILITY MATRIX
Cu=[B AB A’B ... A" 'B]
OBSERVABILITY MATRIX
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Common Laplace Transform Pairs

Time Domain Function Laplace Domain
Name Definition* Function
Unit Impulse 4(1) 1
. + 1
Unit Step HON -
5
. 1
Umnit Ramp t 5
5°
s 2
Parabola t —
s
. . 1
Exponential e "
s+a
Asymptotic 1 —at 1
al —(1—-e™) B —
Exponenti a s(s+a)
: 1 bt 1
Dual Exponential (e —e™) —
b—a : (s+a)s+b)
; ' 1 1 . _ _ 1
Asymptotic Dual i+ (be t_ e br]
Exponential ab a—b s(s+a)(s+D)
Time multiplied _at 1
Exponential fe (s+a)’
. : . ©g
Sine sin(@,t) -
sT+ oy
- ( Y S
Costne cos(,t = 3
ot) s*+op
o . O,
Decaying Sine e sin(m,t) Q0
(s+a) +0o;
Decavine Co “* cos(ont) s+a
ecaying Cosine e " cos(m —
e 4 (s+a) + 0
Bs+C

; V2 2
Decay 4 (s+a) +oy

Prototype Second M, ot - ~ o2
Order Lowpass, T ¢ " sin ( Mg/1-C t) fﬂq
underdamped yi-2 ' s+ 200y + 0

1- L - e " sin (0)0\/1—7;% + q>]

@

' i ; - C—-aB .
Generic Oscillatory | o-at {B cos(m,t)+ sin (@,t )}

Prototype Second 1-¢
Order Lowpass, B (!)é
underdamped _ =2
_ ¢ =tan = s(s”+ 200 + (-)ﬁ)
Step Response o

*All time domain functions are implicitly=0 for t=0 (i.e. they are multiplied by unit step, v(t)).
Tu(t) is more commonly used for the step. but is also used for other things (1) 1s chosen to avoid confusion
(and because in the Laplace domain it looks a little like a step function, I'(s)).



Common Laplace Transform Properties

Name

Ilustration

Definition of Transform

f(t)«—=>F(s)

F(s) = j: f(t)e ™ dt

Linearity

Af, (1) + Bfy (1) = AF,(s)+ BF, (s)

First Derivative

m@.xﬁ(s)— £(07)

Second Derivative

dt
o ;{ff) LS F () -5 (0)- F(07)

n™ Derivative

d" £ (1)

— e LR =S s 0
dt" ( Z ©)

Integral

|0 F(A)dA @%F(s)

Time Multiplication

dF(s)

ds

it (1) VRSN

Time Delay

f(t—a)y(t—a) «=>e™F(s)
¥(t) is umt step

Complex Shift

f)e ™ <Lt F(s+a)

Scaling f{ L ‘ <Lt saF(as)
\ )
Convolution Property fi(O)* f5(5) (L}Fl (s)F5(s)
Twitial Value

(Only if F(s) 15 strictly proper;

order of numerator < order of denominator).

lim f(#) = limsF(s)

Final Value
(if final value exists;
e.g.. decaying exponentials or constants)

lim £(7) = limsF (s)




