

PROGRAM	:	BACHELOR OF ENGINEERING MECHANICAL ENGINEERING
<u>SUBJECT</u>	:	CONTROL THEORY 4B (3B pipeline)
<u>CODE</u>	:	TKN4B21 (TKN3B21)
<u>DATE</u>	:	SUMMER EXAMINATION (Supplementary) JANUARY 2020
DURATION	:	(1-PAPER) 3 hours
TOTAL MARKS	:	100
EXAMINER		: PROF A.G.O. MUTAMBARA

EXTERNAL MODERATOR : PROF J. O. PEDRO (WITS)

<u>NUMBER OF PAGES</u> : 8 PAGES (INCLUDING APPENDICES)

INSTRUCTIONS : STUDENTS CAN RETAIN QUESTION PAPERS

<u>REQUIREMENTS</u> : 4 ANSWER BOOKLETS

INSTRUCTIONS TO CANDIDATES:

Notes

- 1. Answer ALL questions
- 2. This paper contains 5 questions
- 3. Number all answers according to the numbering in the question paper.
- 4. Make sure that you understand what the question requires before attempting it.
- 5. Draw proper sketches where required with all relevant information
- 6. No pencil work will be marked. Please use pen for parts to be marked.
- 7. Answer all questions in **English.**
- 8. Explain answers and give all the necessary steps simply giving the answer is not sufficient

Question 1 – Dynamic system modelling and state-space representation

In some mechanical positioning systems, the movement of a large object is controlled by manipulating a much smaller object that is mechanically coupled with it. The following diagram, Figure 1, depicts such a system, where a force $\mathbf{u}(\mathbf{t})$ is applied to a small mass m in order to position a larger mass M: The coupling between the objects is modeled by a spring constant \mathbf{k} with a damping coefficient \mathbf{b} .

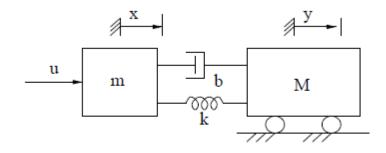


Figure 1(a)

- a) Draw the free-body diagrams of the system. (3)
- b) Write the equations of motion governing this system.
- c) Identify the appropriate state variables and express the equations of motion in the statevariable matrix form (A, B, C, D). (5)
- d) Consider the translational mechanical system shown in Figure 1(b). Find the transfer function model:

$$\mathbf{G}(\mathbf{s}) = \frac{X_1(s)}{F(s)} \tag{5}$$

(20)

(2)

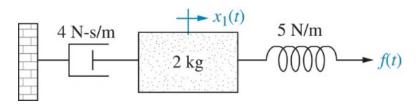


Figure 1(b)

e) For the system described by the following transfer function model derive the state variable model:

$$\mathbf{G}(\mathbf{s}) = \frac{7s+6}{13s^3+10s^2} \tag{5}$$

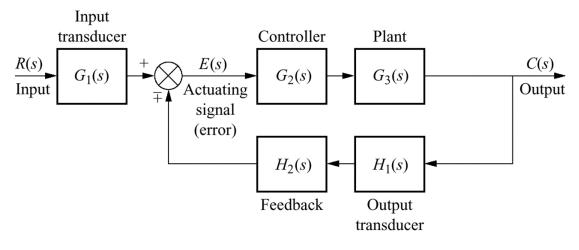


Figure 2

Consider the general (negative or positive) feedback control system illustrated in Figure 2.

a) Show that the closed-loop transfer function of the general negative feedback control system is given by

$$T(s) = \frac{C(s)}{R(s)}$$

$$= \frac{G_1(s)G_2(s)G_3(s)}{1 + G_2(s)G_3(s)H_2(s)H_1(s)}$$
(5)

b) For the special case of (a) where:

$$G_1(s) = H_1(s) = 1$$
; $G_2(s) = K$; $G_3(s) = G(s)$ and $H_2(s) = H(s)$;

Deduce a simplified expression for T(s) and draw the corresponding block diagram. (2)

- c) For a special case of (b) where H(s) = 1, deduce a further simplified expression for T(s) and draw the corresponding block diagram. What name is given to such a control system? (2)
- d) For the system in (c) if

$$K = 36 \text{ and } G(s) = \frac{1}{s(s+6)}$$

Find ω_n , ζ , T_p and T_s .

e) For a more general system

$$KG(s) = \frac{K}{s(s+6)}$$

Design the controller K so that the system responds with 15% overshoot. (4)

Question 3 – Cascade controller (PI, PD, and PID) design

Consider a system whose plant transfer function is given by

$$\mathbf{G}(\mathbf{s}) = \frac{K}{(s+1)(s+3)(12)} \,.$$

In a unity feedback arrangement with a controller D(s) (i.e., a cascade compensator), a damping ratio of 0.5 and a step input;

- a) Find the steady-state error for the uncompensated system. (5)
- b) Show that a PI controller, $\mathbf{D}(\mathbf{s}) = 1 + \frac{0.1}{s}$ will drive the steady-state step response error to zero. (5)
- c) Explain the impact of the PI controller on the transient response. (5)
- d) From first principles show that the PID Controller has two zeros defined by

$$s^2 + \frac{K_P}{K_D}s + \frac{K_I}{K_D} = 0 \tag{5}$$

Question 4 – Frequency response design methods

For a system whose plant transfer function is given by

$$\mathbf{G}(\mathbf{s}) = \frac{2s+2}{s+10}$$

a) Draw the Bode plots (magnitude and phase angle) for the system. (10)

b) If there is a time delay of one second through the system, how does that affect the Bode plots. (5)

Question 5 – State-space representation and design via state-space

A state-space system is represented as follows:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$$
$$\mathbf{y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{u}$$

Given that

(7)

(20)

(15)

(25)

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \quad B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 6 & 2 & 0 \end{bmatrix} \quad D = 0;$$
a) Explain the concepts of controllability and observability (5)
b) Evaluate the controllability and observability of the system (10)
c) Show that the system's transfer function is given by

$$T(s) = \frac{2}{s^2 + 3s + 2}.$$
(7)
d) Explain the significance of the nole-zero cancellations involved in the

d) Explain the significance of the pole-zero cancellations involved in the derivation of T(s).
 (3)

_

APPENDIX A: SOME CONTROL SYSTEM FORMULAE

SYSTEM TRANSFER FUNCTION

$$T(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}.$$

CONTROLLABILITY MATRIX

$$\mathbf{C}_{\mathbf{M}} = \begin{bmatrix} \mathbf{B} & \mathbf{A}\mathbf{B} & \mathbf{A}^{2}\mathbf{B} & \cdots & \mathbf{A}^{n-1}\mathbf{B} \end{bmatrix}$$

OBSERVABILITY MATRIX

$$\mathbf{O}_{\mathbf{M}} = \begin{bmatrix} \mathbf{C} \\ \mathbf{C}\mathbf{A} \\ \vdots \\ \mathbf{C}\mathbf{A}^{n-1} \end{bmatrix}$$

% OVERSHOOT AND ROUTH-HURWITZ TABLE

$$\%OS = e^{-(\zeta\pi/\sqrt{1-\zeta^2})}\times 100$$

$$\frac{R(s)}{a_4 s^4 + a_3 s^3 + a_2 s^2 + a_1 s + a_0} \xrightarrow{C(s)}$$

$$s^{4} = a_{4} = a_{2} = a_{0}$$

$$s^{3} = a_{3} = a_{1} = 0$$

$$s^{2} = \frac{-\begin{vmatrix} a_{4} & a_{2} \\ a_{3} & a_{1} \end{vmatrix}}{a_{3}} = b_{1} = \frac{-\begin{vmatrix} a_{4} & a_{0} \\ a_{3} & 0 \\ a_{3} & 0 \end{vmatrix}}{a_{3}} = b_{2} = \frac{-\begin{vmatrix} a_{4} & 0 \\ a_{3} & 0 \\ a_{3} & 0 \\ a_{3} & 0 \end{vmatrix}}{a_{3}} = 0$$

$$s^{1} = \frac{-\begin{vmatrix} a_{3} & a_{1} \\ b_{1} & b_{2} \\ b_{1} & 0 \\ c_{1} & c_{1} & c_{1} \\ c_{1} & 0 \\ c_{1} & c_{1} & c_{1} \\ c_{1} & c_$$

APPENDIX B

Tiı	Laplace Domain	
Name	Definition*	Function
Unit Impulse	$\delta(t)$	1
Unit Step	$\gamma(t)^{\dagger}$	$\frac{1}{s}$
Unit Ramp	t	$ \frac{\frac{s}{1}}{\frac{s^2}{\frac{2}{s^3}}} $
Parabola	t ²	$\frac{2}{s^3}$
Exponential	e^{-at}	$\frac{1}{s+a}$
Asymptotic Exponential	$\frac{1}{a}(1-e^{-at})$	$\frac{1}{s(s+a)}$
Dual Exponential	$\frac{1}{b-a} \left(e^{-at} - e^{-bt} \right)$	$\frac{1}{(s+a)(s+b)}$
Asymptotic Dual Exponential	$\frac{1}{ab} \left[1 + \frac{1}{a-b} \left(be^{-at} - ae^{-bt} \right) \right]$	$\frac{1}{s(s+a)(s+b)}$
Time multiplied Exponential	te^{-at}	$\frac{1}{\left(s+a\right)^2}$
Sine	$\sin(\omega_0 t)$	$\frac{\omega_0}{s^2+\omega_0^2}$
Cosine	$\cos(\omega_0 t)$	$\frac{s}{s^2 + \omega_0^2}$
Decaying Sine	$e^{-at}\sin(\varpi_d t)$	$\frac{\omega_{d}}{\left(s+a\right)^{2}+\omega_{d}^{2}}$
Decaying Cosine	$e^{-at}\cos(\varpi_d t)$	$\frac{s+a}{\left(s+a\right)^2+\omega_d^2}$
Generic Oscillatory Decay	$e^{-at}\left[B\cos\left(\omega_{d}t\right)+\frac{C-aB}{\omega_{d}}\sin\left(\omega_{d}t\right)\right]$	$\frac{Bs+C}{\left(s+a\right)^2+\omega_d^2}$
Prototype Second Order Lowpass, underdamped	$\frac{\omega_0}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_0 t}\sin\!\left(\omega_0\sqrt{1-\zeta^2}t\right)$	$\frac{\omega_0^2}{s^2+2\zeta\omega_0s+\omega_0^2}$
Prototype Second Order Lowpass, underdamped - Step Response	$1 - \frac{1}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_0 t} \sin\left(\omega_0 \sqrt{1 - \zeta^2} t + \phi\right)$ $\phi = \tan^{-1}\left(\frac{\sqrt{1 - \zeta^2}}{\zeta}\right)$	$\frac{\omega_0^2}{s(s^2+2\zeta\omega_0s+\omega_0^2)}$

Common Laplace Transform Pairs

*All time domain functions are implicitly=0 for t<0 (i.e. they are multiplied by unit step, $\gamma(t)$). †u(t) is more commonly used for the step, but is also used for other things. $\gamma(t)$ is chosen to avoid confusion (and because in the Laplace domain it looks a little like a step function, $\Gamma(s)$).

Name	Illustration
	$f(t) \xleftarrow{L} F(s)$
Definition of Transform	$F(s) = \int_{0^{-}}^{\infty} f(t) e^{-st} dt$
Linearity	$Af_1(t) + Bf_2(t) \xleftarrow{L} AF_1(s) + BF_2(s)$
First Derivative	$\frac{df(t)}{dt} \xleftarrow{L} sF(s) - f(0^{-})$
Second Derivative	$\frac{d^2 f(t)}{dt^2} \xleftarrow{L} s^2 F(s) - sf(0^-) - \dot{f}(0^-)$
n th Derivative	$\frac{\frac{d^n f(t)}{dt^n}}{\overset{L}{\longleftrightarrow}} s^n F(s) - \sum_{i=1}^n s^{n-i} f^{(i-1)}(0^-)$
Integral	$f(\Lambda)d\Lambda \longleftrightarrow -F(S)$
Time Multiplication	$f(t) \xleftarrow{L}{dF(s)}{ds}$ $f(t-a)\gamma(t-a) \xleftarrow{L}{ds} e^{-as}F(s)$
Time Delay	$f(t-a)\gamma(t-a) \xleftarrow{L} e^{-as} F(s)$ $\gamma(t) \text{ is unit step}$
Complex Shift	$f(t)e^{-at} \longleftrightarrow F(s+a)$
Scaling	$f\left(\frac{t}{a}\right) \xleftarrow{L} aF(as)$ $f_1(t) * f_2(t) \xleftarrow{L} F_1(s)F_2(s)$
Convolution Property	$f_1(t) * f_2(t) \xleftarrow{L} F_1(s) F_2(s)$
Initial Value (Only if F(s) is strictly proper; order of numerator < order of denominator).	$\lim_{t \to 0^+} f(t) = \lim_{s \to \infty} sF(s)$
Final Value (if final value exists; e.g., decaving exponentials or constants)	$\lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s)$

Common Laplace Transform Properties