

PROGRAM	:	BACHELOR OF ENGINEERING MECHANICAL ENGINEERING
<u>SUBJECT</u>	:	CONTROL THEORY 4B (3B pipeline)
<u>CODE</u>	:	TKN4B21 (TKN3B21)
<u>DATE</u>	:	SUMMER EXAMINATION NOVEMBER 2019
DURATION	:	(1-PAPER) 3 hours
TOTAL MARKS	:	100
<u>EXAMINER</u>		: PROF A.G.O. MUTAMBARA
EXTERNAL MODERAT	[0]	<u>R</u> : PROF J. O. PEDRO (WITS)
NUMBER OF PAGES	:	8 PAGES (INCLUDING APPENDICES)
INSTRUCTIONS	:	STUDENTS CAN RETAIN QUESTION PAPERS

<u>REQUIREMENTS</u> : 4 ANSWER BOOKLETS

INSTRUCTIONS TO CANDIDATES:

Notes

- 1. Answer ALL questions
- 2. This paper contains 5 questions
- 3. Number all answers according to the numbering in the question paper.
- 4. Make sure that you understand what the question requires before attempting it.
- 5. Draw proper sketches where required with all relevant information
- 6. No pencil work will be marked. Please use pen for parts to be marked.
- 7. Answer all questions in **English.**
- 8. Explain answers and give all the necessary steps simply giving the answer is not sufficient

Question 1 – Dynamic system modelling and state-space representation

a) The input to the translational mechanical system shown in the following diagram is the displacement $x_3(t)$ of the right end of the spring k1. The displacement of m2 relative to m1 is x2. The forces exerted by the springs are zero when $x_1 = x_2 = x_3 = 0$.

(20)

(2)

- i) Draw the free-body diagrams of the system. (3)
- ii) Write the equations of motion governing this system.
- iii) Identify the appropriate state variables and express the equations of motion in the state-variable matrix form (A, B, C, D). (5)
- b) Consider the electrical circuit shown in Figure 1(b). Find the transfer function model:

$$\mathbf{G}(\mathbf{s}) = \frac{V_o(s)}{V_i(s)} \tag{5}$$

Figure 1(b)

c) For the system described by the following transfer function model derive the state variable model:

$$\mathbf{G}(\mathbf{s}) = \frac{8s+10}{s^2+5s+13} \tag{5}$$

Question 2 – Closed-loop system transfer function and the system response (20)

Figure 2

Consider the general (negative or positive) feedback control system illustrated in Figure 2.

a) Show that the closed-loop transfer function of the general negative feedback control system is given by

$$T(s) = \frac{C(s)}{R(s)}$$

$$= \frac{G_1(s)G_2(s)G_3(s)}{1 + G_2(s)G_3(s)H_2(s)H_1(s)}$$
(5)

b) For the special case of (a) where:

 $G_1(s) = H_1(s) = 1$; $G_2(s) = K$; $G_3(s) = G(s)$ and $H_2(s) = H(s)$;

Deduce a simplified expression for T(s) and draw the corresponding block diagram. (2)

- c) For a special case of (b) where H(s) = 1, deduce a further simplified expression for T(s) and draw the corresponding block diagram. What name is given to such a control system? (2)
- d) For the system in (c) if

$$K = 16 \text{ and } G(s) = \frac{1}{s(s+4)}$$

Find ω_n , ζ , T_p , T_s and %OS

e) For a more general system

$$KG(s) = \frac{K}{s(s+4)}$$

Design the controller K so that the system responds with 10% overshoot. (4)

Question 3 – Cascade controller design (PI, PD, and PID)

a) Starting from first principles show that the PID Controller has two zeroes defined by

$$s^2 + \frac{K_P}{K_D}s + \frac{K_I}{K_D} = 0 \tag{5}$$

b) Consider a system whose plant transfer function is given by

$$\mathbf{G}(\mathbf{s}) = \frac{1}{10s^2}.$$

In a unity feedback control system arrangement with a cascade controller **D**(**s**);

- i) Use a proportional controller, $\mathbf{D}(\mathbf{s}) = K_p$. Does this controller provide additional damping? (5)
- ii) Use a PD controller, $\mathbf{D}(\mathbf{s}) = K_P + K_D s$. Determine the tracking property of the outcome for a step input. (5)
- iii) Use a PI controller, $\mathbf{D}(\mathbf{s}) = K_P + \frac{K_I}{s}$. Discuss the effect of this controller on the stability of the system. (5)
- iv) Use a PID controller, $\mathbf{D}(\mathbf{s}) = K_P + \frac{K_I}{s} + K_D s$. Discuss the effect of this controller on the stability and steady-state error (for a step input) of the system. (5)

(7)

(25)

Question 4 – Frequency response design methods

For a system whose plant transfer function is given by

$$\mathbf{G}(\mathbf{s}) = \frac{2s+2}{s^2+10s}$$

- a) Draw the Bode plots (magnitude and phase angle) for the system. (10)
- b) If there is a time delay of one second through the system, how does that affect the Bode plots. (5)

Question 5 – State-space representation and design via state-space (20)

A state-space system is represented as follows:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$$
$$\mathbf{y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{u}$$

a) Define the terms A, B, C, D, x and u

Given that

$$A = \begin{bmatrix} 2 & 3 & 0 \\ 3 & 5 & 5 \\ 4 & 3 & 6 \end{bmatrix} \qquad B = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix}$$
$$C = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \qquad D = 0;$$

b)	Without solving the state equation, find the poles of the system.	(5)
c)	Explain the concepts of controllability and observability	(3)
d)	Establish whether the system is controllable	(5)
e)	Establish whether the system is observable	(5)

(15)

(2)

APPENDIX A: SOME CONTROL SYSTEM FORMULAE

SYSTEM TRANSFER FUNCTION

$$T(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}.$$

CONTROLLABILITY MATRIX

$$\mathbf{C}_{\mathbf{M}} = \begin{bmatrix} \mathbf{B} & \mathbf{A}\mathbf{B} & \mathbf{A}^2\mathbf{B} & \cdots & \mathbf{A}^{n-1}\mathbf{B} \end{bmatrix}$$

OBSERVABILITY MATRIX

$$\mathbf{O}_{\mathbf{M}} = \begin{bmatrix} \mathbf{C} \\ \mathbf{C}\mathbf{A} \\ \vdots \\ \mathbf{C}\mathbf{A}^{n-1} \end{bmatrix}$$

% OVERSHOOT AND ROUTH-HURWITZ TABLE

$$OS = e^{-(\zeta \pi / \sqrt{1 - \zeta^2})} \times 100$$

APPENDIX B

Common Laplace Transform Pairs

Tiı	ne Domain Function	Laplace Domain
Name	Definition*	Function
Unit Impulse	$\delta(t)$	1
Unit Step	$\gamma(t)^{\dagger}$	$\frac{1}{s}$
Unit Ramp	t	$\frac{1}{s^2}$
Parabola	t ²	$\frac{\frac{1}{s^2}}{\frac{2}{s^3}}$
Exponential	e^{-at}	$\frac{1}{s+a}$
Asymptotic Exponential	$\frac{1}{a}(1-e^{-at})$	$\frac{1}{s(s+a)}$
Dual Exponential	$\frac{1}{b-a} \left(e^{-at} - e^{-bt} \right)$ $\frac{1}{ab} \left[1 + \frac{1}{a-b} \left(be^{-at} - ae^{-bt} \right) \right]$	$\frac{1}{(s+a)(s+b)}$
Asymptotic Dual Exponential	$\frac{1}{ab} \left[1 + \frac{1}{a-b} \left(be^{-at} - ae^{-bt} \right) \right]$	$\frac{1}{s(s+a)(s+b)}$
Time multiplied Exponential	te^{-at}	$\frac{1}{\left(s+a\right)^2}$
Sine	$\sin(\omega_0 t)$	$\frac{\omega_0}{s^2 + \omega_0^2}$
Cosine	$\cos(\omega_0 t)$	$\frac{s}{s^2 + \omega_0^2}$
Decaying Sine	$e^{-at}\sin(\varpi_d t)$	$\frac{\omega_{d}}{\left(s+a\right)^{2}+\omega_{d}^{2}}$
Decaying Cosine	$e^{-at}\cos(\varpi_d t)$	$\frac{s+a}{\left(s+a\right)^2+\omega_d^2}$
Generic Oscillatory Decay	$e^{-at} \Bigg[B\cos\left(\omega_{d}t\right) + \frac{C-aB}{\omega_{d}} \sin\left(\omega_{d}t\right) \Bigg]$	$\frac{Bs+C}{\left(s+a\right)^2+\omega_d^2}$
Prototype Second Order Lowpass, underdamped	$\frac{\omega_0}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_0 t}\sin\!\left(\omega_0\sqrt{1-\zeta^2}t\right)$	$\frac{\omega_0^2}{s^2+2\zeta\omega_0s+\omega_0^2}$
Prototype Second Order Lowpass, underdamped Step Response	$1 - \frac{1}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_0 t} \sin\left(\omega_0 \sqrt{1 - \zeta^2} t + \phi\right)$ $\phi = \tan^{-1}\left(\frac{\sqrt{1 - \zeta^2}}{\zeta}\right)$	$\frac{\omega_0^2}{s(s^2+2\zeta\omega_0s+\omega_0^2)}$

*All time domain functions are implicitly=0 for t<0 (i.e. they are multiplied by unit step, $\gamma(t)$). $\dagger u(t)$ is more commonly used for the step, but is also used for other things. $\gamma(t)$ is chosen to avoid confusion (and because in the Laplace domain it looks a little like a step function, $\Gamma(s)$).

Name	Illustration
	$f(t) \xleftarrow{L} F(s)$
Definition of Transform	$F(s) = \int_{0^{-}}^{\infty} f(t) e^{-st} dt$
Linearity	$Af_1(t) + Bf_2(t) \xleftarrow{L} AF_1(s) + BF_2(s)$
First Derivative	$\frac{df(t)}{dt} \xleftarrow{L} sF(s) - f(0^{-})$
Second Derivative	$\frac{d^2 f(t)}{dt^2} \xleftarrow{L} s^2 F(s) - sf(0^-) - \dot{f}(0^-)$
n th Derivative	$\frac{\frac{d^n f(t)}{dt^n}}{\overset{L}{\longleftrightarrow}} s^n F(s) - \sum_{i=1}^n s^{n-i} f^{(i-1)}(0^-)$
Integral	$f(\Lambda) d\Lambda \longleftrightarrow -F(S)$
Time Multiplication	$f(t) \xleftarrow{L}{dF(s)}{ds}$ $f(t-a)\gamma(t-a) \xleftarrow{L}{ds} e^{-as}F(s)$
Time Delay	$f(t-a)\gamma(t-a) \xleftarrow{L} e^{-as} F(s)$ $\gamma(t) \text{ is unit step}$
Complex Shift	$f(t)e^{-at} \longleftrightarrow F(s+a)$
Scaling	$f\left(\frac{t}{a}\right) \xleftarrow{L} aF(as)$ $f_1(t) * f_2(t) \xleftarrow{L} F_1(s)F_2(s)$
Convolution Property	$f_1(t) * f_2(t) \xleftarrow{L} F_1(s) F_2(s)$
Initial Value (Only if F(s) is strictly proper; order of numerator < order of denominator).	$\lim_{t \to 0^+} f(t) = \lim_{s \to \infty} sF(s)$
Final Value (if final value exists; e.g., decaving exponentials or constants)	$\lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s)$

Common Laplace Transform Properties