

PROGRAM	:	BACCALAUREUS TECHNOLOGIAE
		ENGINEERING: ELECTRICAL

: ELECTRICAL MACHINES IV **SUBJECT**

- : **TEF 441** CODE
- DATE : SUPPL EXAMINATION / JANUARY 2020 JANUARY 2020 : 3 HOURS
- DURATION
- : 40:60 WEIGHT
- TOTAL MARKS : 100
- FULL MARKS : 100
- ASSESSOR : DR. M.C MUTEBA
- MODERATOR : DR. L. MASISI

NUMBER OF PAGES : 5 PAGES

REQUIREMENTS

- STANDARD STATIONARY.
- NO-PROGRAMMABLE CALCULATOR MAY BE USED

INSTRUCTIONS

- READ INSTRUCTIONS CAREFULLY.
- ALL CALCULATIONS AND ANSWERS MUST BE DONE WITH A MINIMUM OF 3 DECIMALS.
- WRITING MUST BE IN BLUE OR BLACK INK PEN ONLY- NO PENCIL WRITING WILL BE MARKED
- WORK NEATLY, UNTIDY WORK MAY BE PENALIZED.
- DRAW A SOLID LINE TO INDICATE THE END OF A QUESTION
- ALL UNITS MUST BE SHOWN-MARKS WILL BE DEDUCTED FOR NO OR WRONG UNITS
- ALL CALCULATIONS MUST BE DONE IN COMPLEX NOTATION AND ANSWERS MUST BE WRITTEN IN POLAR FORM, WHERE APPLICABLE.

SECTION A: GENERAL INTRODUCTION AND OPERATION OF SYNCHRONOUS MACHINES

QUESTION 1

- 1.1 During the short-circuit test of a 250 MVA, 11 kV, 50 Hz, 2-pole, star-connected, turbo-alternator, an excitation current of 100 A circulated the full-load current in the armature winding. On open-circuit, the same excitation current produced the terminal no-load voltage of 12.7 kV (Line). Considering that the effective armature resistance is neglected, and by means of the synchronous impedance method, compute the % full-load voltage regulation for a 0.8 lagging power factor.
- 1.2 The rotor of a 20-pole, 50 Hz, three-phase, star-connected, salient-pole alternator is driven at synchronous speed. The armature winding is housed in 180-slots and has 10 conductors per slot configured in two layers. The coils are spanned by 7/9 of a pole pitch. The magnetic flux is assumed to be sinusoidal and it is found to be 0.067 Wb per pole. Compute the r.m.s value of the line induced e.m.f. (10)

QUESTION 2

A 250 kVA, 2.2 kV, 4-pole, 50 Hz, three-phase star connected, round-rotor, synchronous generator has a synchronous impedance of $6.083\angle 80.54^{\circ}$ Ω /phase and operates at a lagging power factor of 0.8. Compute;

2.1. the induced e.m.f	(5)
2.2. the developed power	(3)
2.3. the electromagnetic torque, and	
2.4. the input mechanical power if rotational and field losses are 3 kW.	

SECTION B APPLICATION AND STABILITY OF SYNCHRONOUS MACHINES

QUESTION 3

3.1. A three-phase, 4-pole, 50-Hz, 0.44 kV, delta-connected, synchronous motor has a stator impedance of $(0.554+j2) \Omega$ /phase. The stator absorbs 24387.275 W at a leading power factor of 0.8. Neglecting the field losses and the rotational loss to be 3 kW, compute:

3.1.1.	the back e.m.f (line) and load angle	(3)
3.1.2.	the electromagnetic power and torque	(4)
3.1.3.	the shaft power and torque	(4)

[17 Marks]

[13 Marks]

[21 Marks]

3.1.4. the efficiency

3.2. A 250-MVA, 6.6-kV, 50-Hz, 8-pole, 50-Hz, three-phase, star-connected alternator has a synchronous reactance of 0.2 p.u and is connected to infinite bus. Calculate the synchronizing power and torque per mechanical degree of phase displacement, when operating on full-load with a lagging power factor of 0.8.

QUESTION 4

[9 Marks]

(2)

Discuss the periodic swing of the rotor for the turbo-alternator power-load angle characteristic in **Figure 1**, when the steam is suddenly raised from P_1 to P_2

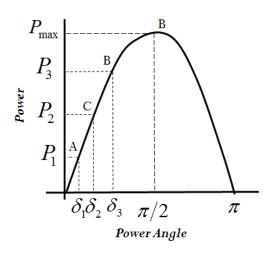


Figure 1: Power-load angle characteristic

[30]

[10 Marks]

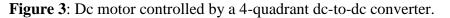
SECTION C: BASICS OF ELECTRICAL MACHINE DRIVES AND CONTROL

QUESTION 5

An electronic chopper in **Figure.2** is place between a 750-V and a dc series motor that provides the traction power to passenger trolley-bus. The dc series motor is rated 200-Hp, 1500-rpm, 650-V, 221-A. The dc motor armature resistance and field series resistance are 0.04 Ω and 0.08 Ω respectively. The chopper controls the torque and speed. The chopper frequency varies from 50-Hz to 2-kHz, but the *on* time is fixed at 500-µSec. Compute:

- **5.1.**The chopper frequency and the current drawn from the line when the motor is at standstill and drawing a current of 270-A (5)
- 5.2. The chopper frequency and line current when the motor delivers its rated output. (5)

4


Figure 2: Dc series motor driven by a chopper

QUESTION 6

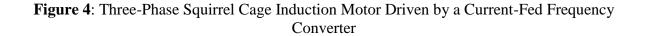
A 4-quadrant converter similar to the one shown in **Figure 3** drives a 200 Hp, 250-V, 600rpm dc motor in voltage variable speed industrial drives. The dc-to-dc converter in **Figure 3** operates at a switching frequency of 2.5-kHz. The converter is fed by a 6-pulse rectifier connected to a 230-V, 3-phase, 50-Hz line. A 400- μ F paper capacitor and *L*_d inductor act like a filter. The dc motor has the following characteristics:

- Armature resistance: $12 \text{ m}\Omega$
- Armature inductance: $350 \,\mu\text{H}$
- ✤ Rated armature current: 620 A


Compute the required on and off times of Q1 and Q4 or Q2 and Q3 respectively, when the dc motor develops its rated torque at rated speed.

QUESTION 7

A 40-Hp, 1165 r. p.m., 460-V, 52-A, 50 Hz, 3-phase squirrel cage induction motor is driven by a current-source frequency converter. The efficiency of motor is 88 % and that of the inverter is 99.4 %. Referring to **Figure 4**, calculate the approximate value of the following:


7.1. The dc power input to converter 2	(3)
7.2. The current in the dc link	(2)

[8 Marks]

[12 Marks]

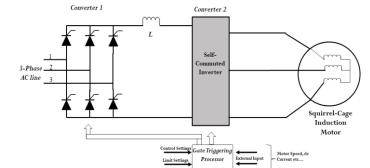
7.3. The dc voltage V_{dc} produced by converter 1

[30]

QUESTION 8 A change of variables that formulates a transformation of 3-phase variables o

INTRODUCTION TO GENERALIZED MACHINE AND REFERENCE FRAME

A change of variables that formulates a transformation of 3-phase variables of stationary circuit elements to the arbitrary reference frame can be expressed as follows:


 $f_{qd0s} = K_S f_{abc}$

SECTION D

THEORIES

Express K_s and $(K_s)^{-1}$ in simple matrix equations

END


```
[10 Marks]
```

[10]