

PROGRAM : NATIONAL DIPLOMA

BUILDING

SUBJECT : STRUCTURES 3

CODE : SAC3000

<u>DATE</u> : SSA EXAMINATION

January 2020

<u>DURATION</u> : (SESSION 1) 8:30 -12:00

WEIGHT : 50:50

TOTAL MARKS : 85

ASSESOR : Prof I. MUSONDA File Number

MODERATOR : MR F. THAIMO 2300

NUMBER OF PAGES : 3 PAGES

REQUIREMENTS : FORMULA SHEETS AND TABLES

INSTRUCTIONS TO CANDIDATES:

PLEASE ANSWER ALL THE QUESTIONS. WRITE CLEARLY AND NUMBERED ALL THE QUESTIONS ANSWERED.

Section 1.0 [35]

1.1 A structural steel beam, measuring 6 meters in length and simply supported at the two ends, is loaded uniformly with a load of 12kN/m. The beam has a yield stress of 275N/mm2.

What is the:

What is the:		
a)	Reaction at support A and B;	(2)
b)	Maximum bending moment;	(2)
c)	Maximum shear force;	(2)
d)	Bending moment diagram;	(2)
e)	Shear force diagram;	(2)
f)	Section modulus (Z _{pl}) of the required beam;	(2)
g)	Suitable I-beam that can be used to sustain the applied	loads;
		(2)
h)	Average shear stress;	(2)
i)	Shear capacity of the selected beam;	(2)
i)	Decision on suitability of the selected I-Beam:	(2)

1.2 Figure 1.0 below shows a 254x146x37kg cantilevered I beam. It has a yield stress of $275N/mm^2$. What is the maximum point load that the beam can carry? Give the answer in KN. (15)

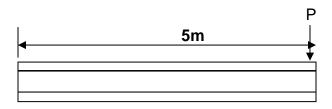


Figure 1.0

(15)

Section 2.0 [20]

2.1 A reinforced concrete beam with an effective depth of 400mm and 230mm wide is reinforced with two, 16 mm diameter high yield reinforcement bars. If the RC beam has a concrete strength of 25 N/mm² and the main reinforcement steel strength is 450N/mm², what is the ultimate moment capacity that cannot be exceeded (10)

- 2.2 Calculate the shear reinforcement required for a rectangular beam with the following properties: (10)
 - a) Beam height = 500mm
 - b) Beam width = 250mm
 - c) Maximum shear force = 200kN
 - d) Reinforcement = 4Y20
 - e) Concrete strength = 30 N/mm²
 - f) Main Steel strength = 450N/mm²
 - g) Stirrups strength = 250N/mm²

Section 3.0 [30]

- 3.0 Study Figure 2.0 below and answer the following questions.
 - a) What are the reactions at supports A and C (3)
 - b) What type of forces act through all the members of the framed structure (9)
 - c) What is the magnitude of forces in each one of the members of the framed structure (18)

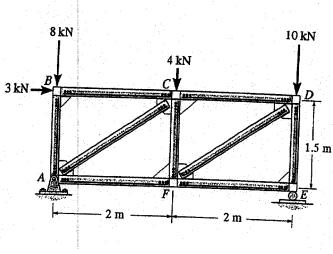


Figure 2.0