

PROGRAM NATIONAL DIPLOMA

ENGINEERING METALLURGY

SUBJECT PHYSICAL METALLURGY III

<u>CODE</u> PMY 33-3

DATE SUPPLEMENTARY EXAMINATION

DURATION 3 HOURS

<u>WEIGHT</u> 40:60

TOTAL MARKS 100

ASSESSOR MR LG JUGANAN

MODERATOR MR SR SEFOKA

NUMBER OF PAGES 3 PAGES

INSTRUCTIONS

• Answer all questions

PHYSICAL METALLURGY PMY 33-3

QUESTION 1	[10]
Explain the significance of the diffusivity coefficient and how alloying additions may impact diffusion.	
QUESTION 2	[10]
Discuss the phenomenon of Polygonization	
QUESTION 3	[10]
How is it possible to increase strength of an alloy with cold work?	
QUESTION 4	[10]
Compare and contrast Carbon and Nitrogen interstitials in surface hardening of steels.	
QUESTION 5	[10]
Draw a TTT diagram showing the effect of a rapid quench and a slow quench for a 0.5% C-steel.	
QUESTION 6	[20]
Write notes on initial Austenite grain size in steels.	
QUESTION 7	[10]
Design a heat treatment for age hardening of a hypothetical alloy.	
TOTA	L = 80

PHYSICAL METALLURGY PMY 33-3