

SCHOOL OF MINING, METALLURGY & CHEMICAL ENGNEERING

DEPARTMENT OF METALLURGY

National Diploma: Physical Metallurgy

SUBJECT:	Physical Metallurgy 1
CODE:	PMY 11-1
ASSESSMENT:	Supplementary Exam Summer 2019
WEIGHT:	40:60
EXAMINAR:	Mr OJ Sanumi
MODERATOR:	Mr TG Langa
DURATION:	3 hours
TOTAL MARKS:	104
FULL MARKS:	100

INSTRUCTIONS:

- Use the appendices provided at the end of the question paper to answer some of the questions
- Scientific calculator is permitted
- Answer all the questions

QUESTION 1: (35 Marks)

1.1	State the Pauli's exclusion principle	(5)					
1.2	Calculate the atomic packing factor (APF) for FCC crystal structures.	(10)					
1.3	The maximum number of atoms in the L shell (n=2) is						
	(a) 6 (b) 4 (c) 14 (d) 8	(2)					
1.4	Calculate the theoretical density of Aluminum FCC with atomic radius of 0.143nm a mass of 27 g/mol.	and atomic (15)					
1.5	Discuss the Octect rule with respect to the stable electronic configuration	(3)					
QUEST	QUESTION 2: (35 Marks)						

- 2.1 Show that the unit cell length (a₀) for a faced center cubic (FCC) with atomic radius R, are related through: $a_0 = \frac{4R}{\sqrt{2}}$ (10)
- It is very possible for a crystalline quartz (SiO₂) to become amorphous. Under what condition does this happen? (5)
- 2.3 Calculate the critical radius (r^*) when solid Nickel forms by homogenous nucleation. The solidliquid interfacial energy for Nickel is 255×10^{-3} J/m². Check appendix for other parameters. (10)
- 2.4 From question (2.3), calculate the number of atoms found in the critical nucleus of the solid Nickel formed. Assuming the lattice parameter of a Nickel FCC crystal is 0.1246nm. (10)

QUESTION 3: (24 Marks)

- 3.1 Name the elements of the following electronic configuration:
 - (a) $1s^22s^22p^63s^23p^63d^{10}4s^2$
 - (b) $1s^22s^22p^63s^23p^6$
 - (c) $1s^22s^22p^63s^23p^63d^{10}4s^1$
 - (d) 1s²2s²2p⁵
- 3.2 From the Aufbau's principle, what is the expected electronic configuration of the following elements:
 - (a) Na⁺
 - (b) Cr²⁺
 - (c) Mg²⁺
 - (d) Si (12)

(12)

QUESTION 4: (10 Marks)

4.1 Write down the Gibbs phase rule, assuming the temperature and pressure are allowed change.Clearly explain the meaning of each term of the Gibbs phase rule. (10)

** END **

APPENDIX

Atomic Packing Factor (APF) = $\frac{(No \ of \frac{Atoms}{Cell})(Volume \ of \ each \ atom)}{Volume \ of \ unit \ cell}$

Theoretical density (
$$\rho$$
) = $\frac{n \times A}{V_c \times N_A}$

 $\frac{V_{r^*}}{V_{unit \; cell}}$

1 nanometer (nm) = 10^{-9} m = 10^{-7} cm = 10 Å 1 angstrom (Å) = 0.1 nm = 10^{-10} m = 10^{-8} cm

Avogadros' Constant = 6.022×10^{23} atoms/mol

$$r^* = \frac{2\sigma_{sl}T_m}{\Delta H_f \Delta T}$$

	Freezing Temperature (<i>T_m</i>)	Heat of Fusion (Δ <i>H_f</i>)	Solid-Liquid Interfacial Energy (<i>σ_{sl}</i>)	Typical Undercooling for Homogeneous Nucleation (Δ <i>T</i>)
Material	(°C)	(MJ/m ³)	(J/m²)	(°C)
Ga	30	488	56×10^{-3}	76
Bi	271	543	$54 imes10^{-3}$	90
Pb	327	237	$33 imes 10^{-3}$	80
Ag	962	965	$126 imes 10^{-3}$	250
Cu	1085	1628	177×10^{-3}	236
Ni	1453	2756	$255 imes10^{-3}$	480
Fe	1538	1737	$204 imes 10^{-3}$	420
NaCl	801			169
CsCl	645			152
H ₂ O	0			40

Table 9-1Values for freezing temperature, latent heat of fusion, surface energy, andmaximum undercooling for selected materials

									Metal								
1A 1 H	IIA			Key 29 - Atomic number Cu - Symbol				Nonmetal			111A	IVA	VA	VIA	VIIA	0 2 He	
3 [J] 6.941	4 Be 9.0122			00.00	r Aton	nic weigh	đ		Interm	ediate		5 8 10.811	6 C 12011	7 N 14.007	8 0 15.959	9 F 18.998	10 Ne 20.18
Na 22.990	Mg 24.305	IIIB	IVB	VB	VIB	VIIB		VIII		IB	IIB	Al 26.982	Si 28.086	P 30.974	5	Ci 35.653	Ar 33.94
19 K 39.698	20 Ca 40.08	21 Sc 44.956	22 Ti 47.87	23 V 50.942	24 Cr 51.995	25 Mn 54.938	26 Fe 55.845	27 Co 58.933	28 Ni 58.69	29 Cu 63.55	30 Zn 65.41	31 Ga 69.72	32 Ge 72.61	33 As 74.922	34 St 78 25.	36 Br 79.904	35 Kr 85.30
37 Rb 85.47	38 Sr 87.62	39 Y 88,91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106.4	47 Ag 107,87	48 Cd 112.41	49 in 114.82	50 5n 118.71	51 Sb 121.76	52 Te 127.60	53 1 126.00	54 Xu 131.3
55 Cs 132.91	56 Ba 137.33	Rare earth series	72 Ht 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.2	76 Os 190.23	77 Ir 192.2	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 TI 204.38	82 Pb 207.19	83 Bi 208.98	84 Po (209)	85 At 1/2101	86 Re (222
87 Fr (223)	98 Ra (226)	Acti- nide series	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (277)	109 Mit (268)	110 Ds (281)	1	1						
R	are earth	i series	57 La 138 91	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm (145)	62 Sm 150.35	63 Eu 151.96	64 Gd 157 25	65 Tb 158.92	66 Dy 162.50	67 Ho 164.93	68 Er 167 26	69 Tm 168.93	70 Yb 173 04	71 Lu 174.9
	Actinide	e series	89 Ac (227)	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)