FACULTY OF ENGINEERING AND BUILT ENVIRONMENT

## 2019 NOVEMBER EXAMINATION

## DEPARTMENT OF QUALITY AND OPERATIONS MANAGEMENT

| PROGRAMME: | NATIONAL DIPLOMA |
| :---: | :---: |
| MODULE | ORGANISATIONAL EFFECTIVENESS 2B |
| CODE | ORE22B2/OEF22B2 |
| DATE | 26 November 2019 |
| DURATION | 3 HOURS |
| TIME | 08H00-11H30 |
| TOTAL MARKS | 100 |

EXAMINER
INTERNAL MODERATOR Ms. J MHANGA
NUMBER OF PAGES 8 PAGES

Mr. M MOLEFE

## INSTRUCTIONS TO CANDIDATES:

- There are two section.
- There are four question asked
- Question papers must be handed in.
- This is a closed book assessment.
- Read the questions carefully and answer only what is asked.
- Number your answers clearly.
- Write neatly and legibly.
- Structure your answers by using appropriate headings and sub-headings.
- Round of all digits to 2 decimal spaces, unless instructed otherwise.
- The general University of Johannesburg policies, procedures and rules pertaining to written assessments apply to this assessment.


## SECTION A

## QUESTION 1

Define the following Terms.
1.1 Restricted work.
(2)
(2)
(2)
1.3 Operations chart
1.4 Time study
1.5. Illustrate the five $\{5\}$ symbols used in the basic procedure o method study
1.6. Re-draw the diagram and fill in the missing blocks

[17]

## Question 2

A warehouse layout is presented below, make use of the information to answer the questions below.

NOTE: every two meters when the machine is wheeled out it cost the company R 2.50. The machine takes 30 seconds to be wheeled a distance of a single meter. The operator of the machine is paid R5 a minute

2.1. What is the total cost of distance within the presented warehouse?
2.2. From the door If the travelling distance from section $A$ to section $C$ (through section $B$ and $D$ ) is reduced by half. How much will be saved for the company.
2.3. If section $F$ is moved to section $D$ how much money will be saved
2.4. If the process in section $C$ is 32 min how much is the operator paid
2.5. If the operator needs to travel from section $B$ to $E$, via route $B A E$ and when he gets to section $E$ he performs a process that takes 32 minutes. How much will it cost the company

## Question 3 <br> (SHOW ALL WORKINGS)

A cake producing company hired a mixing machine for 7 days. each day consists of 8 working hours. During this period the machine was used 45 hours, due to shortages in resources the machine was idle for 2 hours and 15 min , the total breakdown time 23 min due to faulty parts, and not operating due to changeovers for 37 min .80 cakes were produced. Each cake is produced at a rate for 15 minutes.
3.1 Machine maximum time
3.2Machine running time
3.3Machine Utilization Index.
3.4Machine Efficiency Index.
3.5Machine Effective Utilization Index.

## Question 4

Use the case study below to complete the time study sheets provided.
Note: The observed times provided are in seconds

## ALL answers must be in $\underline{2}$ decimal places (except in Averages and Ratings, which must be whole number)

A metal gate is a great accessory for a yard entrance or patio with a fence. The gate will keep animals and unwanted guests out at night, without breaking up the flow of your lawn with a solid, wood door or wall. It is also easy to open and close, and metal makes it very strong. A metal gate can be built by anyone who has knowledge of metalworking and can cut and weld metal bars. A worker cutting metal for making small gates was observed. After conducting a pilot study, the following elements had been recorded:

The study was scheduled to begin at 07:50 but got delayed whereby the study ended up starting at $8: 20$. The study took 40 minutes and the time elapsed after study that was recorded was 200 cm .

1. collect material from warehouse
2. switch on the machine
3. Cut two lengths of 1 -inch metal channel bar to the width of the gate $(55,58,62,61,60)$
4. channel bar to the height of the gate
(324, 320, 325, 323, 321),
5. Clamp the two 36 -inch lengths of channel bar to the ends of the bar in the vise, (except cycle 4)
(887, 886, 885, 886),

Organizational Effectiveness 2B
CODE:ORE22B2
6. align metal in the machine
7. weld the corners of the hinge to the gate
8. Weld a gate latch to the other side of the gate
9. take out the finished gate from the machine
10. after each gate, switch-off the machine
(40, 40, 40, 40, 43),
(90, 93, 89, 88, 91),
(122, 123, 125, 120, 126), (450, 455, 449, 452, 450),
(120, 118, 120, 125, 122)

## Allowances...

Fatigue allowances $2 \%$, Contingences 200 CM , delay 0.05 hours and Policy allowances 5000 centi-minutes, 15 min personal needs allowance, Tool maintenance 650 seconds,

Calculate the following.
4.1 Calculate sample size for element 1 and 5 (show all workings).
4.2 Time elapsed before study.
4.3 Time elapsed after study.
4.3 Elapsed time.
4.4 Recorded Time.
4.5 Watch error.
4.6 Total basic time.
4.7 Element basic time.
4.8 Element Representative Basic Time.
4.9 Total Representative basic time.
4.10 Allowances.
4.11 Machine control time
4.12 Unoccupied time allowance
4.13 Standard time

| Organtrational Etfectiveness 2B | S-NAME | STUDENT\#\#\#:ORE22B2 |
| :---: | :---: | :---: |
|  |  |  |

OBSERVATION SHEET

| DEPARTMENT; | Time Finished | TEBS | DATE (yy/mm/dd) |
| :--- | :--- | :--- | :--- |
| DIVISION; |  | + TEAS | OPERATION NO; |
| MACHINE DESCRIPTION; | - Time Started | +Obs Time OF <br> all elements | TAKEN BY; |
|  |  |  | Elapsed time: |
| $\mathbf{~ W O R K E R ; ~}$ |  |  |  |
|  | = Elapsed Time | = RT | Recorded Time: |
|  |  |  | Watch Error (ET-RT/ET *100) |
|  |  |  |  |

Element Break Points;

> | TEBS; |
| :--- |
| TEAS; |

| Elem no | Rating | Obs <br> Time | Basic Time | Total Basic Time | Elem no | Rating | Obs <br> Time | Basic Time | Total Basic Time | Elem no | Rating | Obs <br> Time | Basic Time | Total Basic Time |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  |  | 1 |  |  |  |  | 1 |  |  |  |  |
| 2 |  |  |  |  | 2 |  |  |  |  | 2 |  |  |  |  |
| 3 |  |  |  |  | 3 |  |  |  |  | 3 |  |  |  |  |
| 4 |  |  |  |  | 4 |  |  |  |  | 4 |  |  |  |  |
| 5 |  |  |  |  | 5 |  |  |  |  | 5 |  |  |  |  |
| 6 |  |  |  |  | 6 |  |  |  |  | 6 |  |  |  |  |
| 7 |  |  |  |  | 7 |  |  |  |  | 7 |  |  |  |  |
| 8 |  |  |  |  | 8 |  |  |  |  | 8 |  |  |  |  |
| 9 |  |  |  |  | 9 |  |  |  |  | 9 |  |  |  |  |
| 10 |  |  |  |  | 10 |  |  |  |  | 10 |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 |  |  |  |  | 1 |  |  |  |  |  |  |  |  |  |
| 2 |  |  |  |  | 2 |  |  |  |  |  |  |  |  |  |
| 3 |  |  |  |  | 3 |  |  |  |  |  |  |  |  |  |
| 4 |  |  |  |  | 4 |  |  |  |  |  |  |  |  |  |
| 5 |  |  |  |  | 5 |  |  |  |  |  |  |  |  |  |
| 6 |  |  |  |  | 6 |  |  |  |  |  |  |  |  |  |
| 7 |  |  |  |  | 7 |  |  |  |  |  |  |  |  |  |
| 8 |  |  |  |  | 8 |  |  |  |  |  |  |  |  |  |
| 9 |  |  |  |  | 9 |  |  |  |  |  |  |  |  |  |
| 10 |  |  |  |  | 10 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

ANALYSIS SHEET

| DEPARTMENT; | DATE (yy/mm/dd) |
| :--- | :--- |
| MACHINE no; | OPERATION NO; |
| MACHINE DESCRIPTION; | TAKEN BY; |
| TASK DESCRIPTION; |  |
|  |  |
|  |  |
|  |  |



| $\begin{aligned} & \text { Elm } \\ & \text { no } \end{aligned}$ | $\begin{aligned} & \text { Typ } \\ & \text { e of } \\ & \text { elm } \end{aligned}$ | Element Description | Element basic time | Volum $\mathrm{e}$ | Freq uenc y | Element <br> Repres <br> Basic <br> Time |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  |  |  |  |
| 2 |  |  |  |  |  |  |
| 3 |  |  |  |  |  |  |
| 4 |  |  |  |  |  |  |
| 5 |  |  |  |  |  |  |
| 6 |  |  |  |  |  |  |
| 7 |  |  |  |  |  |  |
| 8 |  |  |  |  |  |  |
| 9 |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| TOT | L RE | RESENTATIVE BASI |  |  |  |  |
|  | Perso | nal needs Allowance ( |  |  |  |  |
|  | Fatig | e Allowance ( ) |  |  |  |  |
|  | Allow | ance |  |  |  |  |
| BAS | C WO | RK CONTENT |  |  |  |  |
|  | Work | Contingency Allowance ( |  |  |  |  |
|  | Tool | Maintenance Allowance ( |  |  |  |  |
|  | orking | Allowance |  |  |  |  |
| TOT | AL BA | SIC WORK CONTENT |  |  |  |  |
|  | lay A | lowance ( ) |  |  |  |  |
| OCC | UPIED | TIME |  |  |  |  |
|  | MCT | $=(O T$ of $I W+U T)$ |  |  |  |  |
|  | UTA | $=(M C T-B T$ of $I W)$ |  |  |  |  |
|  | occupi | d Time Allowance |  |  |  |  |
| STA | NDAR | TIME |  |  |  |  |
|  | icy Al | owance ( ) |  |  |  |  |
| ALL | OWED | TIME (SECONDS) |  |  |  |  |
| ALL | OWED | TIME (STD. MIN) |  |  |  |  |
| ALL | OWED | TIME (STD. HR) |  |  |  |  |

