

PROGRAM	:	NATIONAL DIPLOMA
		CHEMICAL ENGINEERING
<u>SUBJECT</u>	:	CHEMICAL PLANT 3A
CODE	:	ACPA 321
DATE	:	ASSA EXAMINATION
DURATION	:	
		40 00
<u>WEIGHT</u>	:	40 : 60
TOTAL MARKS	:	100
EXAMINER(S)	:	MISS NOXOLO SIBIYA
MODERATOR		DR. A. MAMVURA
MODERATOR	•	
NUMBER OF PAGES	:	4 PAGES
REQUIREMENTS	:	Use of scientific (non-programmable) calculator is permitted
	-	r
		(Only one per candidate)

HINTS AND INSTRUCTIONS TO CANDIDATE(S):

- Purpose of assessment is to determine not only if you can write down an answer, but also to assess whether you understand the concepts, principles and expressions involved. Set out solutions in a logical and concise manner with justification for the steps followed.
- **ATTEMPT** <u>ALL</u> **QUESTIONS**. Please answer each question to the best of your ability.
- Write your details (module name and code, ID number, student number etc.) on script(s).
- Number each question clearly; questions may be answered in any order.
- Make sure that you <u>read each question carefully</u> before attempting to answer the question.
- Show all steps (and units) in calculations; this is a 'closed book' test.
- Ensure your responses are <u>legible</u>, <u>clear</u> and <u>include relevant units</u> (where appropriate).

QU	ESTION 1	[20]
1.2.	Name and briefly explain three (3)classifications of minerals Distinguish between toughness and hardness of the material A copper tube with wall thickness of 8 mm must carry an axial tensile force of allowable tensile stress is 90 MPa. Calculate the minimum required outer approximately.	
QU	ESTION 2	[20]
	Discuss hydrogen degradation, its causes and how it can be prevented With the use of a diagram, describe how you would protect an underground corrosion using cathodic protection for both galvanic and impressed current material will you use as a sacrificial anode and why?	
QU	ESTION 3	[21]
 3.2. 3.3. 3.4. 	Explain the importance of pre-conditioning water prior water treatment. Describe screening process Distinguish between water treatment and waste water treatment Discuss the sources and causes of air pollution What are the negative effects of water pollution on humans, animals and plants	[4] [3] [4] [4] s [6]
QU	ESTION 4	[20]
4.2. 4.3.	Define comminution Describe the operation principles of attrition mills A crusher is used to grind sugar from crystals of which it is acceptable that 80 μ m sieve, down to a size in which it is acceptable that 80% passes a 88 μ m horsepower motor is found just sufficient for the required throughput. If the re changed such that the grinding is only down to 80% through a 125 μ m sieve but is to be increased by 50% would the existing motor have sufficient power grinder? Assume that Bond's equation holds.	sieve, and a 5- quirements are the throughput
QU	ESTION 5	[19]
5.2.	Why is separation needed? Determine the advantages and disadvantages of mechanical separation Explain the working principle of both magnetic and electrostatic separation	[3] [4] [12]
ENI	D OF EXAM TOTAL N	$\overline{MARKS} = 100$
	FULL	<u>MARKS= 100</u>

FORMULA SHEET

STRENGTH OF MATERIALS

$$\sigma = E \cdot \varepsilon \qquad \qquad \sigma = \frac{F}{A}$$

PARTICLE SIZE REDUCTION

Kick's Law $\boldsymbol{E} = K_K \cdot f_c \cdot \log_e \left(\frac{L_1}{L_2}\right)$ or $\boldsymbol{E} = K_K \cdot f_c \cdot \ln \left(\frac{L_1}{L_2}\right)$

Rittinger's Law

$$\boldsymbol{E} = K_R \cdot f_C \cdot \left(\frac{1}{L_2} - \frac{1}{L_1}\right)$$

Bond's Law
$$E = E_i \cdot \left(\frac{100}{L_2}\right)^{1/2} \cdot \left(1 - \frac{1}{q^{1/2}}\right)$$
 with $q = \frac{L_1}{L_2}$

Specific surface area $V_{\mathbf{P}} = p \cdot D_{\mathbf{P}}^3$ $A_{\mathbf{P}} = 6 \cdot q \cdot D_{\mathbf{P}}^2$ **Shape factor** $\lambda = \frac{q}{p}$

MATERIAL HANDLING

 $T_1 = T_2 e^{\mu\theta}$ Tensions ratio for a flat conveyor belt

$$T e^{\frac{\mu\theta}{\sin(\frac{\phi}{2})}}$$

Tensions ratio for a v-conveyor belt $T_1 = T_2 e$

Effective belt tension $T_e = T_1 - T_2 = \frac{P_T}{v}$

Maximum belt tension
$$T_1 = T_e \frac{e^{t}}{e^{\mu\theta} - 1} \Rightarrow T_1 = T_e \frac{e^{t}}{e^{\mu\theta} - 1}$$
 with $n = e^{\mu\theta}$

 $_{\mu}\theta$

Maximum permissible belt stress

$$\sigma = \frac{T_1}{W \cdot p}$$

$$= T_e v = (T_1 - T_2)v = T_1 \left(1 - \frac{1}{e^{\mu\theta}}\right)v \quad \& \quad P_T = P_e + P_m \pm P_m$$

μθ

 $P = \frac{P_T}{n}$ Motor power

Power required to raise material

 $P_e = F_e v = m_i (l + 45) g \mu_e v$ Power required to drive the empty belt $P_m = m_m g l \mu_m v$ Power required to convey material $P_r = (Cap)gh$

 P_T

GALVANIC SERIES: The following is the galvanic series for stagnant (that is, low oxygen content) water. The order may change in different environments.

CATHODIC OR MOST NOBLE(PRO	FECTED END)			
Graphite				
Palladium				
Platinum				
Gold				
Silver				
Titanium				
Stainless steel 316 (passive)				
Stainless Steel 304 (passive)				
Silicon bronze				
Stainless Steel 316 (active)				
Monel 400				
Phosphor bronze				
Admiralty brass				
Cupronickel				
Molybdenum				
Red brass				
Brass plating				
Yellow brass				
Naval brass 464				
Uranium 8% Mo				
Niobium 1% Zr				
Tungsten				
Stainless Steel 304 (active)				
Tantalum				
Chromium plating				
Nickel (passive)				
Copper				
Nickel (active)				
Cast iron				
Steel				
Lead				
Tin				
Indium				
Aluminum				
Uranium (pure)				
Cadmium				
Beryllium				
Zinc plating (see galvanization)				
Magnesium				
ANODIC OR LEAST NOBLE (CORRODED END)				