

PROGRAM : NATIONAL DIPLOMA

MINING ENGINEERING

<u>ASSESSMEN</u>T : SUPPLEMENTARY EXAMINATION

SUBJECT : TECHNICAL SERVICES

<u>CODE</u> : MTL3211

DATE : 6/01/2019

<u>DURATION</u> : 3 HOURS (15H00 -18H00)

TOTAL MARKS : 100 Marks

WEIGHTING : 60% YrMark

EXAMINER : WB MOTLHABANE

MODERATOR : T. MATAMBELE

INSTRUCTIONS

- 1. ANSWER ALL QUESTIONS
- 2. UNDERLINE AFTER EACH QUESTION AND LABEL THE QUESTIONS AS

LABELLED IN THE PAPER

- 3. NO CELLPHONES (SWITCH-OFF)
- 4. DO NOT USE TIPPEX/INK ERASOR

QUESTION ONE

- a) List at least five (5) sources of dust liberation and discuss how these sources you have listed can be mitigated against. [10]
- b) List and explain at least three (3) common lung diseases can could be contracted in our mines. [6]
- c) Discuss the coal concentrations for coal dust explosion to occur with both minimum and maximum violence. [5]
- d) Discuss essential requirements for dust explosion to occur. [5]
- e) Explain how a volatile content in the coal would influence the ignition sensitivity of dust explosion. [2]
- f) What are the provisions of legislation in terms occupational exposure limits to combat silicosis? (2)

[30 marks]

QUESTION TWO

- a) Determine if a personnel will be safe, if she took refuge behind a brick wall of overall strength 1 Mpa when a 300 bar m/s shockwave of coal dust explosion is set off. [5]
- b) Two airways as shown in the diagram are connected in parallel.

Airway AD is a tunnel, 150m long, 3,5m wide, and 3,5m high.

Airway ABCD is a tunnel, 180m long, 2,6m wide, and 1,9m high.

The air density = 1.2kg/m^3 .

Calculate the combined resistance of the system. [5]

Assume $K = 0.01 \text{Ns}^2/\text{m}^4$.

QUESTION THREE

- a) Define Young's Modulus and explain how you would go about determining it for a rock sample in a laboratory. In addition to your explanation include the use of appropriate graph to further illustrate your answer (10).
- b) Without using the direct test explain how else you may determine the tensile strength of a rock sample in laboratory, include sample preparation discussion (10).
- c) Demonstrate by use of suitable graph how the confinement can increase the peak strength of a rock sample. Give practical example of where confinement principle could be applicable (5).
- d) Explain the difference between K ratio and Poisson's ratio (5)

[30 marks]

QUESTION FOUR

Consider sign conventions and magnitudes of stresses below;

Sign conventions		
Normal Stress	Shear Stress	Angles
Negative: Tensile	Clockwise: Positive	Clockwise: Positive
Positive: Compressive	Anti-clockwise: Negative	Anti-clockwise: Negative

$$\tau_{xy} =$$
 -12 Mpa; $\delta_x =$ - 8 Mpa and $\delta_y =$ - 10 Mpa

- i. Construct and fully label stress element diagram for this state of stress. (15)
- ii. Construct Mohr circle and determine the major and minor principal stresses and Maximum shear stress as well as all their directions.(15)

[30 marks]

[TOTAL MARKS 100]