PROGRAM	NATIONAL DIPLOMA MINING ENGINEERING
SUBJECT	MINE SURVEY AND VALUATION III
CODE	MSV 3211
DATE	SUPPLEMENTARY EXAMS 2020 08 JANUARY 2020
DURATION	(SESSION 2) 11:30-14:30
WEIGHT	40: 60
TOTAL MARKS	100

ASSESSOR	$:$ MR K S PHOGOLE
MODERATOR	$:$ MS Z MDLULI
NUMBER OF PAGES	$: 6$ PAGES

INSTRUCTIONS $:$\begin{tabular}{l}

1. ANY CALCULATOR IS ALLOWED. \\
\hline
\end{tabular}

INSTRUCTIONS TO CANDIDATES:

1. PLEASE ANSWER ALL THE QUESTIONS.
2. MARKS WILL BE ALLOCATED FOR NEATNESS AND CHECKS
3. NUMBER THE QUESTIONS CLEARLY

Question 1

Calculate the co-ordinates of P , given the following information:-

	$\underline{\mathbf{Y}}$	$\underline{\mathbf{X}}$
$\mathrm{R}]$	+5690.200	+8421.720
S]	+4284.200	+8481.720
$\mathrm{~T}]$	+5690.200	+10809.420

The instrument was set up at point P and the following readings were observed:-
Observation $\mathrm{P}-\mathrm{R}=142^{\circ} 37^{\prime} 20^{\prime \prime}$
Observation $\mathrm{P}-\mathrm{S}=198^{\circ} 53^{\prime} 44^{\prime \prime}$
Observation $\mathrm{P}-\mathrm{T}=31^{\circ} 53^{\prime} 41^{\prime \prime}$
Hint: Draw your circle through points PRS

Question 2

$A B$ and $C D$ are two railway straights to be joined by using a circular curve of 146.000 m radius.

Direction A to B	$=260^{\circ} 00^{\prime} 00^{\prime \prime}$
Direction D to C	$=113^{\circ} 00^{\prime} 00^{\prime \prime}$
Horizontal distance A to D	$=462.742 \mathrm{~m}$
Direction A to D	$=277^{\circ} 30^{\prime} 00^{\prime \prime}$

NB the curve does not necessarily start and end at B and C.
Calculate the total distance A to D along the proposed curve.

Question 3

$\mathrm{AB}=$
82.404 m
$\mathrm{BC}=$
116.000 m
$\mathrm{AC}=108.256 \mathrm{~m}$

The line DE is parallel to side BC and the perpendicular distance between $D E$ and $B C$ is 24.000 m . ADB and AEC are straight lines)

Calculate:
1.1 Internal angles at A, B and C .
1.2 Distances AD, DE and AE.
1.3 Areas of $\triangle \mathrm{ABC}, \triangle \mathrm{ADE}$ and figure DEBC.

Note: All calculations must be fully checked.

(20)

Question 4

In the sketch below, W is a survey peg at the bottom of a winze on the western contact of a dyke. R is a survey peg in the raise on the eastern contact of the same dyke. A connection must be developed from R to survey peg W .

Given:

Coordinates of peg W: $+3606.100+1786.105$
Coordinates of peg 8: $+3556.074+1801.602$
Elevation of peg W: -2 249.354
Elevation of peg 8: $\quad-2283.461$
Direction peg 7 to peg 8: \quad 41:07:30

Observations

At survey peg 8

Instrument Height	$=$	1.492 m
Horizontal clockwise angle 7-8-R	$=$	$268: 47: 50$
Measured Inclined distance $8-\mathrm{R}$	$=46.882 \mathrm{~m} @+31: 07: 10$	

Measured Inclined distance $8-\mathrm{R}=46.828 \mathrm{~m} @+30: 59: 09$
Bob length at peg R (top button) $=1.404 \mathrm{~m}$
Bob length at peg R (bottom button) $=1.515 \mathrm{~m}$

Calculate:

a) The coordinates and elevation of peg R
b) The direction, dip and inclined length of the connection from peg R to peg W

Question 5

An evenly dipping reef plane was intersected in three boreholes A, B and C at depths below datum plane as recorded on the sketch plan below.

$$
- \text { A -1 } 611.200
$$

```
-1
B -2 158.600
```


Given the following information:
$>$ Coordinates of Borehole A] $-5754.188+28005.088$
Borehole B] $-5561.021+28894.787$

Borehole C] $-6785.342+29510.736$

Direction $\mathrm{A}-\mathrm{B} \quad=\quad$ 12:14:59
$>$ Distance A - B $\quad=\quad 910.427 \mathrm{~m}$
$>$ Direction $\mathrm{A}-\mathrm{C} \quad=\quad$ 325:35:40
$>$ Distance A-C $=1824.898 \mathrm{~m}$

CALCULATE:

a) The direction of the strike of the reef plane
b) The direction of true dip of the reef plane
c) The amount of true dip of the reef plane

