| PROGRAM | NATIONAL DIPLOMA |
| :---: | :---: |
|  | MINING ENGINEERING |
| SUBJECT | MINE SURVEY AND VALUATION III |
| CODE | MSV3211 |
| DATE | FINAL EXAMINATION |
|  | 18 NOVEMBER 2019 |
| DURATION | (X-PAPER) 08:30-11:30 |
| WEIGHT | 40: 60 |
| TOTAL MARKS | 105 |

EXAMINER : MR K S PHOGOLE
MODERATOR : MS Z MDLULI
NUMBER OF PAGES : 7 PAGES

| INSTRUCTIONS $:$ |
| :--- |

## INSTRUCTIONS TO CANDIDATES:

1. PLEASE ANSWER ALL THE QUESTIONS.
2. MARKS WILL BE ALLOCATED FOR NEATNESS AND CHECKS
3. NUMBER THE QUESTIONS CLEARLY

## QUESTION 1

The following observations were taken in an ore pass being developed. From the information given below and the cross-measurements taken at Peg B26, calculate:
1.1. The co-ordinates and elevation of Peg A26.
1.2. The direction A26 - FLP.
1.3. Elevation of the FLP.
1.4. The length of the chains to be suspended from Peg A26 and the FLP.


## GIVEN:

| Co-ordinates Peg | A25 | $+730.516 \quad-293.518$ |
| :--- | :--- | :--- |
| Elevation Peg | A25 | -1613.516 metres |
| Grade Elevation Peg | A25 | -1614.939 metres |
| Direction A25 - A20 |  | $152: 13: 10$ |
| Required dip of the Ore Pass | +55 |  |

## Observations at Peg A25

Horizontal Clockwise angle A20 - A25 - A26 $=$ 276:13:15
Vertical Angle A25 - A26 $=\quad+54: 17: 10$
Slope Distance A25-A26 $=15.966 \mathrm{~m}$
Bob Length at A26 $=1.013 \mathrm{~m}$
Height of Instrument at A25 $=1.427 \mathrm{~m}$

## Observations at Peg A26

Horizontal Clockwise angle A25 - A26 - FLP $\quad=\quad$ 130:14:05
Vertical Angle A26 - A25 $\quad=\quad-55: 38: 20$
Slope Distance A25 - A26 $=16.508 \mathrm{~m}$
Bob Length at A25 $=2.282 \mathrm{~m}$
Height of Instrument at A26 $=1.201 \mathrm{~m}$


## QUESTION 2

Survey pegs A and C indicate the top and bottom corners of an underhand stope respectively. CB was the original raise, developed on the true dip of the reef.


## GIVEN :

$\begin{array}{rcc} & \underline{\mathbf{Y}} & \underline{\mathbf{X}} \\ \text { Coordinates of A] } & +6153.208 & +1709.365 \\ \text { C] } & +6098.100 & +1697.960\end{array}$

- Elevation of $\mathrm{A}=-2605.750$
- Elevation of $\mathrm{C}=-2644.790$
- Direction of strike (i.e direction A - B) $\quad=\quad$ 218:00:00


## CALCULATE :

2.1. The dip of the reef along the stope face.
2.2. The length of the stope face.
2.3. The true dip of the reef.
2.4. The inclined length of the raise.

## QUESTION 3

In the re-opening of an old section of a mine, it was decided to continue a drive from which the rails had been stripped.
Points on the footwall were levelled and the following results were obtained:-

| POINT <br> NO | B/S | I/S | F/S | ELEVATION | $\begin{gathered} \hline \text { HD. } \\ \text { FROM } \\ \underline{\mathbf{1}} \\ (\mathrm{m}) \end{gathered}$ | REMARKS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 431 | $\overline{0.980}$ |  |  | - 1225.790 |  | An inverted staff reading |
| 1 |  | 1.480 |  |  | 0 | of 0.980 at peg 431 was |
| 2 |  | 1.165 |  |  | 15 | taken as an intermediate |
| 3 |  | 1.100 |  |  | 30 | sight |
| 4 | 1.295 |  | 1.000 |  | 45 |  |
| 5 |  | 1.160 |  |  | 60 |  |
| 6 |  | 1.085 |  |  | 75 |  |
| 7 | 1.450 |  | 1.010 |  | 90 |  |
| 8 |  | 1.160 |  |  | 105 |  |
| 9 |  | 1.015 |  |  | 120 |  |
| 10 |  |  | 1.105 |  | 140 |  |

It was decided to lay new rails on the average grade existing between 0 m and 120 m
(i.e. points 1 to 9 ) thereafter to continue the drive at a grade of $+1: 150$

## Calculate:

1) The reduced elevations at points 1 to 10 .
2) The gradient between 1 and 9 .
3) The grade elevation at points 1 to 10 , if the grade elevation at point 1 is 1.0 m above the footwall elevation at point 1 .

## QUESTION 4



The figure above shows a reef drive on 10 level which has been intersected by a fault " ff " at point $D$. A reef winze has been sunk at a point $\mathrm{W}, 100$ metres south of D on the true dip of the reef. From a point T in the winze, 11 level drive north is developed and intersects the fault at point $R$.

## GIVEN:

True dip of reef
Direction of strike of the reef
Dip of the fault
Direction of strike of the fault
Elevation of 10 level
Elevation of 11 level

$$
\begin{aligned}
& =\quad 37^{\circ} \text { in an easterly direction. } \\
& =\quad 151^{\circ} 00^{\prime} 00^{\prime \prime} . \\
& =\quad 54^{\circ} \text { in a southerly direction. } \\
& =\quad 269^{\circ} 00^{\prime} 00^{\prime \prime} . \\
& =\quad-1040.000 \mathrm{~m} \\
& =\quad-1088.000 \mathrm{~m}
\end{aligned}
$$

## CALCULATE:

4.1. The direction of the line of intersection.
4.2. The dip along the line of intersection.
4.3. The distance the drive on 11 level will advance from point T to intersect the fault.
4.4. The length of the raise along the line of intersection.
4.5. The area available for mining from the winze to the reef/fault line of intersection.

## OUESTION 5



S


Two new points $[\mathrm{S}]$ and $[\mathrm{T}]$ were triangulated from two known points $[\mathrm{A}]$ and $[\mathrm{B}]$.
The new point $[\mathrm{S}]$ lies to the South of the line $\mathrm{A}-\mathrm{B}$.
The new point [T] lies to the North of the line A - B.

|  | $\underline{Y}$ |  | $\underline{\mathbf{X}}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Co-ordinates of A] | + 1301.349 |  | + 451.614 |  |  |
| Co-ordinates of $\mathbf{B}$ ] | +1537.715 |  | + 763.883 |  |  |
| Horizontal Clockwise | Angle ABS | = | $65^{\circ} 32^{\prime} 32^{\prime \prime}$ | = | 1 |
| Horizontal Clockwise | Angle SAB | = | $51^{\circ} 36^{\prime} 38^{\prime \prime}$ | = | 2 |
| Horizontal Distance f | rom A to T | $=$ | 727.178 m |  |  |
| Horizontal Distance f | rom B to T | $=$ | 683.412 m |  |  |

Calculate:
5.1 The co-ordinates of S.
5.2 The co-ordinates of T.

Total marks $=[105]$

