FACULTY OF SCIENCE

EXAMINERS:
Prof ARE Prinsloo University of Johannesburg

EXTERNAL MODERATOR:

TIME: 3 Hours
MARKS: 110

Please read the following instructions carefully:

1. Answer all the questions.
2. No programmable calculators allowed.
3. All symbols have their normal meaning.

Question 1 [5]

Accept that the electron density, $n(r)$, associated with the crystal lattice can be expanded in the following Fourier series:

$$
n(\bar{r})=\sum_{\bar{G}} e^{-i \bar{G} \cdot \stackrel{\rightharpoonup}{r}} .
$$

The primitive reciprocal lattice vectors are:

Show that $n(r)$ is invariant under a crystal translation \boldsymbol{T}.
Question 2 [20]
The primitive translation vectors of the hexagonal space lattice are given by:

$$
\begin{equation*}
\overline{a_{1}}=\frac{\sqrt{3} a}{2} \hat{x}+\frac{a}{2} \hat{y} ; \quad \overline{a_{2}}=\frac{-\sqrt{3} a}{2} \hat{x}+\frac{a}{2} \hat{y} ; \quad \overline{a_{3}}=c \hat{z} . \tag{4}
\end{equation*}
$$

(a) Show that the volume of the primitive cell is given by $\sqrt{3} a^{2} c / 2$.
(b) Show that the primitive translations of the reciprocal lattice are given by:

$$
\begin{equation*}
\overline{b_{1}}=\frac{2 \pi}{\sqrt{3} a} \hat{x}+\frac{2 \pi}{a} \hat{y} ; \quad \overline{b_{2}}=\frac{-2 \pi}{\sqrt{3} a} \hat{x}+\frac{2 \pi}{a} \hat{y} ; \quad \overline{b_{3}}=\frac{2 \pi}{c} \hat{z} . \tag{9}
\end{equation*}
$$

(c) Describe the first Brillouin zone of the bcc lattice.

Question 3 [12]

Consider X-rays with wave vector \boldsymbol{k} falling onto a crystal. The rays are elastically scattered in the direction \boldsymbol{k}^{\prime} the wave vector of the reflected beams. Making use of a sketch, derive the diffraction condition:

$$
\begin{equation*}
2 \bar{k} \bullet \bar{G}+G^{2}=0 . \tag{12}
\end{equation*}
$$

Question 4 [5]

Accept that the scattering amplitude in the direction $\Delta \bar{k}=\overline{k^{\prime}}-\bar{k}=\bar{G}$ is directly proportional to the geometric structure factor:

$$
S_{\bar{G}}=\sum_{j}^{s} f_{j} e^{i \bar{G} \cdot \overline{r_{j}}},
$$

where j is over the s atoms in the basis and f_{j} the atomic form factor of the $j^{\text {th }}$ atom in the axis. Use this information to explain why the diffraction pattern of a bcc crystal will contain a (222) line but not a (111) line.

Question 5 [14]

Consider the normal modes of a linear lattice with a primitive lattice constant a, having a basis of two identical atoms of mass M at equilibrium, separated by $\delta<1 / 2 a$. Both atoms of the basis are on a line. The force constant between the atoms of the basis is $C_{1}=10 C$, that between one atom and the nearer of the two atoms belonging to the nearest basis is $C_{2}=C$ (see figure). An example would be a crystal composed of diatomic molecules, for example H_{2}. Find the dispersion relation $\omega(K)$ at $K=0$ and $K=\pi / a$. Sketch the dispersion relation qualitatively and discuss the sketch with special reference to the optical and acoustic modes.

10C

Question 6 [10]

In the Debye model for the density of states the thermal energy for each polarization is given by

$$
U=\int_{0}^{\omega_{p}} d \omega D(\omega) \frac{\hbar \omega}{e^{\hbar \omega / \tau}-1}
$$

Making use of periodic boundary conditions it can be shown that the density of states of the vibration modes is given by (DO NOT SHOW):

$$
D(\omega)=\frac{V K^{2}}{2 \pi^{2}}\left(\frac{d K}{d \omega}\right)
$$

Make use of the Debye model to find the Debye heat capacity:

$$
\begin{equation*}
C_{V}=\frac{3 V \hbar^{2}}{2 \pi^{2} v^{3} k_{B} T^{2}} \int_{0}^{\omega_{0}} d \omega \frac{\omega^{4} e^{\hbar \omega / \tau}}{\left(e^{\hbar \omega / \tau-1}\right)^{2}} . \tag{10}
\end{equation*}
$$

Question 7 [8]

Consider N free electrons at 0 K in a cube with side length L. Show that the kinetic energy of the gas is given by:

$$
U_{0}=\frac{3}{5} N \epsilon_{F}
$$

Assume that the average electron energy is given by:

$$
\begin{equation*}
\langle\epsilon\rangle=\frac{\int \in D(\in) f(\in) d \in}{\int D(\epsilon) f(\epsilon) d \in} \tag{8}
\end{equation*}
$$

where $f(\epsilon)$ represents the Fermi-Dirac distribution function.

Question 8 [12]

Considering an electron moving in a linear periodic lattice, subjected to a periodic lattice potential $U(x)$, the central equation can be derived as:

$$
\left(\frac{\hbar^{2} k^{2}}{2 m}-\epsilon\right) C(k)+\sum_{G} U_{G} C(k-G)=0
$$

where $U(x)=\sum_{G} U_{G} e^{i G x}$. Here $C(k)$ as well as $C(k-G)$ are the Fourier coefficients.
Accept the information given and solve the central equation by only considering Fourier coefficients $C(1 / 2 G)$ and $C(-1 / 2 G)$ at the zone boundary $k=\frac{\pi}{a}=\frac{l}{2} G$, showing that an energy gap exists at the zone boundary.
Given:

$$
\begin{equation*}
\psi_{k}(x)=\sum_{G} C(k-G) e^{i(k-G) x)} \tag{12}
\end{equation*}
$$

Question 9 [8]

Show that the density of electrons in the conduction band is given by

$$
n=2\left(\frac{m_{e} k_{B} T}{2 \pi \hbar^{2}}\right)^{3 / 2} \exp \left[\left(\mu-E_{c}\right) / k_{B} T\right]
$$

All symbols have their normal meaning. State all assumptions clearly.
Given: $\int_{0}^{\infty} x^{1 / 2} e^{-x} d x=\frac{1}{2} \pi^{\frac{1}{2}}$ and the general equation for the density of states is given by $D(\varepsilon)=\frac{V}{2 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \varepsilon^{\frac{1}{2}}$.

Question 10 [8]

The average number of magnons excited in the mode ω_{k} in thermal equilibrium is given by the Planck distribution function as: $\left\langle n_{k}\right\rangle=\left(e^{\hbar \omega / \tau}-1\right)^{-1}$, where $\tau \equiv k_{B} T$.
The total number of magnons excited at a temperature T is given by: $\sum_{k} n_{k}=\int d \omega D \omega\left\langle n_{k}(\omega)\right\rangle$.
Show that for a three dimensional ferromagnet at low temperatures:

$$
\begin{equation*}
\frac{\Delta M}{M(0)} \propto T^{3 / 2} \tag{8}
\end{equation*}
$$

where this result gives the Bloch $T^{3 / 2}$ law.

Question 11 [8]

Consider a conductive electron gas at $T=0 \mathrm{~K}$ of which the concentrations of spin-up and spindown electrons are respectively given by:

$$
N^{+}=\frac{1}{2} N(1+\xi) ; \quad N^{-}=\frac{1}{2} N(1-\xi) .
$$

The effect of the exchange interaction between the conduction electrons is negligible. By using the minimizing of the total energy ($E_{\text {Total }}=E^{+}+E^{-}$) and solving for ξ in the limit where $\xi \ll 1$, show that the Pauli spin susceptibility of the system is given by:

$$
\chi=\frac{M}{B}=\frac{3 N \mu^{2}}{2 \epsilon_{F}} ; \quad \epsilon_{F}=\frac{\hbar^{2}}{2 m}\left(\frac{3 \pi^{2} N}{V}\right)^{\frac{2}{3}},
$$

where M is the Pauli spin magnetism for the system.

