FACULTY OF SCIENCE

PHYSICS	AUCKLAND PARK KINGSWAY CAMPUS
	PHY00A3
	SUPPLEMENTARY EXAMINATION
	18 JULY 2019
$11: 30-14: 30$	

PHY00A3

EXAMINER:
EXTERNAL EXAMINER:

TIME: 3 HOURS

Prof H Winkler

Prof K Goldstein Wits University

MARKS: 180
Full Marks: 160

Please read the following instructions carefully:
ANSWER ALL QUESTIONS: 1-9

QUESTION 1

a) Explain what the expectation value of a parameter is. Do not just provide a formula.
b) A particle has the wave function $\psi(x)=\left\{\begin{array}{cc}A \exp \left(-i b x^{2}\right) & a<x<a \\ 0 & |x|>a\end{array}\right.$
i) Normalise this wave function,
ii) Determine the expectation value of the momentum,
iii) Describe how you would verify the Heisenberg uncertainty relation for this particle (no need to do the calculations!)
c) Clarify the significance of the Heisenberg uncertainty principle.

QUESTION 2

a) Show that when the wave function ψ is an eigenfunction of the Hamiltonian, the variance of the Hamiltonian equals zero.
b) Given a normalised initial wave function $\Psi(x, 0)=\sqrt{\frac{30}{a^{5}}} x(a-x)$ in the range
$0 \leq x \leq a$, and zero elsewhere, show that $c_{n}=-\frac{4 \sqrt{15}}{n^{3} \pi^{3}}(\cos (n \pi)-1)$,
where c_{n} are the coefficients in the formula $\Psi(x, t)=\sum_{n=1}^{\infty} c_{n} \sqrt{\frac{2}{a}} \sin \left(\frac{n \pi}{a} x\right) \exp \left(-i \frac{n^{2} \pi^{2} \hbar}{2 m a^{2}} t\right)$
c) Show that $\hbar \omega\left(a_{+} a_{-}+\frac{1}{2}\right) \psi=E \psi$.

QUESTION 3

a) A free particle is initially localised in the interval $-a<x<a$, and its $t=0$ wave function $\Psi(x, 0)=\sqrt{\frac{15}{16 a^{5}}}\left(a^{2}-x^{2}\right)$ in that range and 0 elsewhere.
i) Calculate the transform function $\phi(k)$.
ii) Hence express $\Psi(x, t)$ at a later time t.
b) Consider a potential as illustrated in the diagram below.

Assume that you are asked to determine the wave function $\psi(x)$ for the bound state $0<$ $V(x)<b$. Draw up a set of equations representing the wave function in each region of the diagram and describe how you would go about obtaining a complete solution. (Note: do not attempt to solve these equations mathematically!)

QUESTION 4

a) Show that if the eigenvalues of an operator are always real, then the operator is Hermitian.
b) List three properties of Hermitian transformations.
c) Consider the operator $\hat{Q}=\frac{d^{2}}{d \phi^{2}}$ where ϕ is the azimuthal angle in polar coordinates.
i) Is Q hermitian?
ii) What are the eigenfunctions and eigenvalues of Q ?
d) Confirm that $|\langle f \mid g\rangle|^{2} \geq\left|\frac{1}{2 i}(\langle f \mid g\rangle-\langle g \mid f\rangle)\right|^{2}$

QUESTION 5

a) The solution to the three-dimensional Schrödinger equation for a potential $V(r)$ contains a part dependent on the angle ϕ only, given by $\Phi(\phi)=A \exp ($ im $\phi)$.

Prove that m must be an integer.
b) Given that $P_{1}(x)=x$, calculate $P_{1}^{1}(x)$.
c) i) Calculate the radial wave function $R_{52}(r)$ in terms of the Bohr radius a and c_{0}.
ii) Determine for which values of r the wave function is zero.

QUESTION 6

a) Starting with the classical definition of the angular momentum $\mathbf{L}=\mathbf{r} \times \mathbf{p}$, determine the quantum mechanical operators L_{x}, L_{y} and L_{z}. Hence show that

$$
\begin{equation*}
\left\lfloor L_{y}, L_{z}\right\rfloor=i \hbar L_{x} . \tag{10}
\end{equation*}
$$

b) Noting that $L_{-} f$ is an eigenfunction of both L^{2} and L_{z}, and that $\left[L^{2}, L_{-}\right]=0$, confirm that $\hat{L}^{2}\left(L_{-} f\right)=\lambda\left(L_{-} f\right)$.
c) Consider the tensor formulation of the components of \mathbf{S}. Calculate the eigenvector and eigenvalue of S_{z}.

QUESTION 7

a) Why is it necessary that the combined wave function for a pair of identical particles must satisfy the relationship $\psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)= \pm \psi\left(\mathbf{r}_{2}, \mathbf{r}_{1}\right)$?
b) Consider an electron free to move in a neutral rectangular solid of sides l_{x}, l_{y} and l_{z} parallel to the x, y and z axes.
i) Construct a suitable Schrodinger equation for this electron.
ii) Show that the energy of this electron is given by the formula

$$
\begin{equation*}
E=\frac{\hbar^{2} \pi^{2}}{2 m}\left(\frac{n_{x}^{2}}{l_{x}^{2}}+\frac{n_{y}^{2}}{l_{y}^{2}}+\frac{n_{z}^{2}}{l_{z}^{2}}\right) \tag{8}
\end{equation*}
$$

where n_{x}, n_{y} and n_{z} are positive integers.
c) Consider an electron in a crystal with atoms spaced at regular intervals parallel to the x-axis.
i) What then are the characteristics of the potential and wave function in terms of x ?
ii) Without doing specific calculations, describe how the one-dimensional Schrödinger equation would be solved and the wave function determined.

QUESTION 8

a) Two particles of mass m both move towards a common point at a common speed of 0.6 c. The particles stick together thereafter to form a new particle. Show that the mass of the combined particle is $2.5 \times m$.
b) Through what angle must a 0.2 MeV photon be scattered by a free electron so that it loses 10% of its energy?
c) Utilising a sketch if necessary, describe the potential $V(r)$ of a diatomic molecule and explain its main features. Hence conclude that diatomic molecules will have states with energy levels approximately of the form

$$
\begin{equation*}
E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega \quad \text { where } n=0,1,2,3, \ldots \text { (as long as } n \text { is not too large) } \tag{7}
\end{equation*}
$$

QUESTION 9

a) Draw the potential experienced by an alpha particle in the vicinity of an atomic nucleus and use this to describe the alpha decay process. Explain how the alpha decay rate can be estimated (without doing any explicit calculations!)
b) Determine the age of a piece of wood in which the ratio of carbon-14 to carbon-12 is 7.0×10^{-13}. (Given: The half-life of carbon-14 is 5730 years and the assumed C-14 to C-12 ratio in a living tree is 1.3×10^{-12})
c) Which of the four fundamental forces of nature only acts on hadrons? Briefly describe the characteristics of that force.

Constants:

$$
\begin{array}{lll}
c=3 \times 10^{8} \mathrm{~m} . \mathrm{s}^{-1} & e=1.6 \times 10^{-19} \mathrm{C} & h=6.626 \times 10^{-34} \mathrm{~J} . \mathrm{s} \\
\hbar=h / 2 \pi & m_{e}=9.31 \times 10^{-31} \mathrm{~kg} & m_{p}=1.67 \times 10^{-27} \mathrm{~kg} \\
R=1.097 \times 10^{7} \mathrm{~m}^{-1} & a=5.29 \times 10^{-11} \mathrm{~m} & \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~m}^{-2} \mathrm{~N}^{-1} \\
1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J} & R_{0}=1.2 \times 10^{-15} \mathrm{~m} &
\end{array}
$$

Formulae:

$$
\begin{aligned}
& \sigma=\sqrt{\left\langle j^{2}\right\rangle-\langle j\rangle^{2}} \quad \sigma_{x} \sigma_{p} \geq \frac{\hbar}{2} \quad \Delta E . \Delta t \geq \hbar / 2 \\
& i \hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi}{\partial x^{2}}+V \Psi \quad p_{x}=-i \hbar \frac{\partial}{\partial x} \quad f(t)=\exp \left(-\frac{i E t}{\hbar}\right) \quad \sum_{n=1}^{\infty}\left|c_{n}\right|^{2}=1 \\
& \psi_{n}(x)=\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi}{a} x\right) \quad E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m a^{2}} \quad c_{n}=\sqrt{\frac{2}{a}} \int_{0}^{a} \sin \left(\frac{n \pi}{a} x\right) \Psi(x, 0) \\
& \Psi(x, t)=\sum_{n=1}^{\infty} c_{n} \sqrt{\frac{2}{a}} \sin \left(\frac{n \pi}{a} x\right) \exp \left(-i \frac{n^{2} \pi^{2} \hbar}{2 m a^{2}} t\right) \quad \Psi(x, 0)=\sum_{n=1}^{\infty} c_{n} \psi_{n}(x) \\
& a_{+} \equiv \frac{1}{\sqrt{2 m \hbar \omega}}\left(-\hbar \frac{d}{d x}+m \omega x\right) \quad a_{-} \equiv \frac{1}{\sqrt{2 m \hbar \omega}}\left(\hbar \frac{d}{d x}+m \omega x\right) \quad E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega \\
& a_{+} \psi_{n}=\sqrt{n+1} \psi_{n+1} \quad a_{-} \psi_{n}=\sqrt{n} \psi_{n-1} \quad \phi(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \Psi(x, 0) \exp (-i k x) d x \\
& \Psi(x, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \phi(k) \exp \left[i\left[k x-\frac{\hbar k^{2}}{2 m} t\right)\right] d k \quad \Psi(x, 0)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \phi(k) \exp [i k x] d k \\
& \langle f \mid g\rangle=\int_{a}^{b} f(x)^{*} g(x) d x \quad\left|\int_{a}^{b} f(x)^{*} g(x) d x\right| \leq \sqrt{\int_{a}^{b}|f(x)|^{2} d x \int_{a}^{b}|g(x)|^{2} d x} \\
& \nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta}\left(\frac{\partial^{2}}{\partial \phi^{2}}\right) \\
& \sin \theta \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)+\left[l(l+1) \sin ^{2} \theta-m^{2}\right] \Theta=0 \quad \Theta(\theta)=A P_{l}^{m}(\cos \theta) \\
& P_{l}^{m}(x)=\left(1-x^{2}\right)^{|m| / 2}\left(\frac{d}{d x}\right)^{|m|} P_{l}(x) \quad P_{l}(x)=\frac{1}{2^{l} l!}\left(\frac{d}{d x}\right)^{l}\left(x^{2}-1\right)^{l} \quad \int_{0}^{\infty}|R(r)|^{2} r^{2} d r=1 \\
& \int_{0}^{\pi} \int_{0}^{2 \pi}|Y(\theta, \phi)|^{2} \sin \theta d \theta d \phi=1 \quad c_{j+1}=\frac{2(j+l+1-n)}{(j+1)(j+2 l+2)} c_{j} \quad R(r)=\frac{u(r)}{r} \\
& \rho=\kappa r=\frac{r}{a n} \quad \rho_{0}=\frac{m e^{2}}{2 \pi \varepsilon_{0} \hbar^{2} \kappa} \quad n=j_{\max }+l+1 \quad L_{x}=y p_{z}-z p_{y} \\
& \left\lfloor L_{x}, L_{y}\right\rfloor=i \hbar L_{z} ;\left\lfloor L_{y}, L_{z}\right\rfloor=i \hbar L_{x} ;\left[L_{z}, L_{x}\right]=i \hbar L_{y} \quad L_{+}=L_{x}+i L_{y} ; L_{-}=L_{x}-i L_{y} \\
& L_{z}=\frac{\hbar}{i} \frac{\partial}{\partial \phi} \quad L_{+}=\hbar \exp (i \phi)\left(\frac{\partial}{\partial \theta}+i \cot \theta \frac{\partial}{\partial \phi}\right) \quad L_{-}=-\hbar \exp (-i \phi)\left(\frac{\partial}{\partial \theta}-i \cot \theta \frac{\partial}{\partial \phi}\right) \\
& \left.\hat{L}_{z} f=\hbar m f \quad L^{2} f=\hbar^{2} l(l+1) f \quad\left\lfloor S_{x}, S_{y}\right\rfloor=i \hbar S_{z} ; \mid S_{y}, S_{z}\right\rfloor=i \hbar S_{x} ;\left[S_{z}, S_{x}\right]=i \hbar S_{y}
\end{aligned}
$$

$$
\begin{aligned}
& S^{2} f=\hbar^{2} s(s+1) f \quad S_{z} f=\hbar m_{s} f \quad \sigma_{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) ; \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) ; \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& E_{n}=-\left[\frac{m}{2 \hbar^{2}}\left(\frac{Z e^{2}}{4 \pi \varepsilon_{0}}\right)^{2}\right] \frac{1}{n^{2}} \quad n=1,2,3, \ldots \quad E_{F}=\frac{\hbar^{2}}{2 m}\left(3 \rho \pi^{2}\right)^{2 / 3} \\
& E_{p h}=h f=h c / \lambda \quad \bar{x}=\gamma(x-v t) \quad \bar{y}=y \quad \bar{z}=z \quad \bar{t}=\gamma\left(t-\frac{v}{c^{2}} x\right) \\
& \gamma=\frac{1}{\sqrt{1-v^{2} / c^{2}}} \quad \bar{u}_{x}=\frac{u_{x}-v}{1-v u_{x} / c^{2}} \quad \bar{u}_{y}=\frac{u_{y}}{\gamma\left(1-v u_{x} / c^{2}\right)} \quad \bar{u}_{z}=\frac{u_{z}}{\gamma\left(1-v u_{x} / c^{2}\right)} \\
& E=\frac{m c^{2}}{\sqrt{1-v^{2} / c^{2}}} \quad E^{2}=p^{2} c^{2}+m^{2} c^{4} \quad \lambda=\lambda_{0}+\frac{h}{m c}(1-\cos \theta) \quad p^{2}=h / \lambda \\
& E_{R}=\frac{\hbar^{2}}{I} J(J+1) \quad \quad E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega \quad N=N_{0} \exp (-\lambda t) \quad T_{1 / 2}=\frac{0.693}{\lambda} \\
& \int_{-\infty}^{\infty} \exp \left(-a x^{2}\right) d x=\sqrt{\frac{\pi}{a}} \quad \int_{-\infty}^{\infty} x^{2} \exp \left(-a x^{2}\right) d x=\frac{1}{2 a} \sqrt{\frac{\pi}{a}} \quad \int_{0}^{\pi} \sin ^{2} x d x=\frac{\pi}{2}
\end{aligned}
$$

