\(\left.\left.$$
\begin{array}{lll}\text { PROGRAM } & : & \begin{array}{l}\text { BTECH } \\
\text { (MINING ENGINEERING) }\end{array}
$$ \\

SUBJECT \& : \& MINING PROJECTS\end{array}\right] $$
\begin{array}{lll}\text { CODE } & : & \text { MPT 42-1 }\end{array}
$$\right\}\)| DATE JANUARY 2020 |
| :--- |
| $\underline{\text { DURATION }}$ |
| $\underline{\text { TOTAL MARKS }}$ |

INSTRUCTIONS

1. NO CELLPHONES (SWITCH-OFF)
2. DO NOT USE TIPPEX.

REQUIREMENTS

1. ONE SCIENTIFIC CALCULATOR
2. FORMULA SHEET PROVIDED

PROJECT MANAGEMENT

QUESTION 1

1.1 What is a program and what is program management?
1.2 A project's success is directly influence by active stakeholder involvement in the discovery and decomposition of needs into requirements and by the care taken in determining, documenting and managing the requirements of the product, service, or result of the project. How may these requirements be collected?
1.3 Provide a Project Charter Template
1.4 Name and explain the types of project information a work package may contain.

QUESTION 2

Consider the following project (time given in days).

Activity	Optimistic Time	Most Likely Time	Pessimistic Time	Predecessors
a	1	4	7	-
b	2	2	2	-
c	2	5	8	a
d	3	4	5	a
e	4	6	8	c, b
f	0	0	6	c, b
g	3	6	9	$\mathrm{~d}, \mathrm{e}$

Find:
2.1 The network.
2.2 All expected activity times, variances, and slacks. Tabulate.
2.3 The critical path and expected completion time.
2.4 The probability the project will be done in 23 days.
2.5 The completion time corresponding to 95% probability.

QUESTION 3

Given the following project (all times in days):

Activity	Predecessor	Normal Time	Normal Cost	Crash Time	Crash Cost
A	-	5	50	3	150
B	-	4	40	2	200
C	B	7	70	6	160
D	A,C	2	20	1	50
E	A,C	3	30	-	-
F	B	8	80	5	290
G	D	5	50	4	100
H	E,F	6	60	3	180

3.1 Draw the network and find the critical path, time, and cost for an all-normal level of project activity. Calculate the crash cost-per-day (all activities may be partially crashed).
3.2 Find the optimal way of getting an 18-day delivery time. What is the project cost?
3.3 Find the optimal way of getting a 16-day delivery time. What is the project cost?

