

PROGRAM : BACCALAUREUS TECHNOLOGIAE

EXTARCTION METALLURGY

SUBJECT : **PROCESS CONTROL IV**

<u>CODE</u> : MPE 32-1

DATE : EXAMINATION SSA 2019

DECEMBER 2019

<u>DURATION</u> : (Y-PAPER) 08:00 - 11:00

<u>WEIGHT</u> : 40:60

TOTAL MARKS : 100

EXAMINER : MR MK KALENGA 5142

MODERATOR : LM OMARI

NUMBER OF PAGES : 3 PAGES AND 3 ANNEXURES

<u>INSTRUCTIONS</u>: QUESTION PAPERS MUST BE HANDED IN.

REQUIREMENTS : CALCULATORS ARE NOT REQUIRED

INSTRUCTIONS TO CANDIDATES: Question paper to be handed in

PLEASE ANSWER ALL THE QUESTIONS.

QUESTION 1

Does the location of the zeros of a system affect its response to external inputs? Elaborate your answer.

[15]

QUESTION 2

A multiple pole p_3 which is repeated m times gives rise to terms such as those given below. The terms within the brackets grow toward infinity with time, independently of where pole p_3 is located. Explain then, why the overall term of the equation below decays to zero when p_3 is located on the negative real axis?

[15]

QUESTION 3

Fund the solution of the following set of equations:

$$dx_1/dt = 2x_1 + 3x_2 + 2$$
 with $x_1(0) = 0$

$$dx_1/dt = 2x_1 + 3x_2 + e^t$$
 with $x_1(0) = 0$

[20]

QUESTION 4

Consider the following second-order differential equation:

$$a_2 \frac{d^2 x}{dt^2} + a_1 \frac{dx}{dt} + a_0 x = f(t)$$

where X(t) is considered to be in the form of a

deviation variable with initial conditions

$$x(0) = \left(\frac{dx}{dt}\right)_{t=0} = 0$$

What would be the time function if:

- 1. $a_1^2-4a_2a_0=0$ and $a_1=2$, $a_2=1$ and $a_0=1$
- 2. $a_1^2-4a_1a_0<0$ and $a_1=2$, $a_2=2$ and $a_0=2$

[20]

QUESTION 5

Discuss the principal considerations that affect the scope of mathematical modeling of a metallurgical process.

[15]

QUESTION6

Calculate the time function of the following Laplace transform:

$$X(s) = 1/(s-1)^3(s+2)$$

[15]

TOTAL: 100