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Question 1                   (36 marks) 

 
Figure 1 shows a rigid massless lever connected to a mass m, spring with a stiffness k and damper 

with a viscous damping coefficient c.  The total length of the lever between the spring and mass 

is l.  The lever pivots about point A.  The angular displacement of the lever and vertical 

displacement of the mass are  and x respectively.  The horizontal distance between the spring 

and pivot is a and that between the pivot and damper is b. 

 

Derive the equations of motion of the system for both rotational- and translational coordinate 

systems, with  and x as the displacement coordinates.  Also calculate the undamped- and damped 

natural frequencies for both coordinate systems, for the following parameters: 

 

 k:  5 000 N/m 

 m:  20 kg 

 c:  50 Ns/m 

 

 a:  100 mm 

 b:  200 mm 

 l:  400 mm 

 

 

 
 

Figure 1:  Rigid massless lever 
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Question 2                   (26 marks) 

 
Equation (1) gives an assumed deflection shape 1 of the fundamental bending mode of a guided-

guided beam in terms of x/l: 

 

 ψ
1
 = 2 (

x

l
)

5

 – 5 (
x

l
)

4

+ 5 (
x

l
)

2

 – 1 ⋯⋯(1) 

 

 

The modal stiffness and mass are given by: 

 

 k1 = ∫ EI (
d

2
ψ

1

dx2
)

2

dx
l

0

⋯⋯(2a) 

 

 m1 = ∫ ρA ψ
1
2dx

l

0

⋯⋯(2b) 

 

 

Determine the eigenvalue of the fundamental bending mode of the beam. 

 

 

 

 

Question 3                   (11 marks) 

 
A piston-powered, propeller-driven aircraft makes a vertical circular loop with a radius of 500 m 

(see Figure 2).  The engine and propeller are directly-coupled and both run anti-clockwise at         

2 200 RPM, looking from aft.  The tangential speed of the aircraft in the loop is constant at        

200 km/h.  The combined moment of inertia of the engine and propeller is 17 kgm2.  Determine 

the magnitude and direction of the gyroscopic moment of the engine and propeller acting on the 

aircraft, as well as the response of the aircraft to the gyroscopic effect of the engine and propeller. 

 

 
Figure 2:  Aircraft making a vertical loop 
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Question 4          (20 marks) 

 
Consider the schematic of a velometer shown in Figure 3.  A velometer estimates the velocity Vb 

of the base from the relative velocity Vr, which is the difference between the velocity V of the 

mass and velocity Vb of the base. 

 

The ratio of relative velocity to true base velocity, for harmonic base motion, is given by: 

 

|
Vr

Vb

|  = 
r2

√(1 – r2)2 + (2ζr)2
             (1) 

 

 

where the symbols denote the following: 

r: Frequency ratio, i.e. /n 

: Dimensionless damping factor 

Vr: Relative velocity, i.e. difference between the velocity of the mass V and that of the 

base Vb 

Vb: True velocity, i.e. velocity of the base Vb 

 

 

Figure 4 [Figliola & Beasley, 2011]* shows a graph of |Vr Vb⁄ | against r and dimensionless 

damping factor. 

 

For any given damping factor  ζ < 1 √2⁄ , the ratio |Vr Vb⁄ | reaches a peak.  For that range of 

damping factors, derive an equation for: 

 

(i) the frequency ratio r where |Vr Vb⁄ | reaches a peak 

(ii) the peak ratio |Vr Vb⁄ | 
 

 

 
Figure 3:  Velometer 

 

 

 

 

* Figliola, R.S., & Beasley, D.E., “Theory and Design for Mechanical Measurements,”         

5th Edition, John Wiley & Sons, 2011, p. 513, Figure 12.9  

Vb 

V 
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Figure 4:  |Vr Vb⁄ | against r and damping factor [Figliola & Beasley, 2011]* 

 

 

 

 

Question 5                   (18 marks) 

 
An electrohydraulic servomotor is schematically shown in Figure 5*.  The servomotor consists of 

an electrohydraulic servovalve, actuator, load and rigid massless lever connecting the valve- and 

actuator rods. 

 

The load mass is denoted by m.  The input displacement of the lever is x, which is applied at the 

left end of the lever.  The displacement of the valve rod is z and that of the actuator and load is y. 

 

Consider the special case where a = b.  For x as the input to the servomotor and y as the output, 

the Laplace-domain transfer function Y(s)/X(s) may be given by: 

 

Y(s)

X(s)
 = 

K1C
1
Ap

2K2m

s2 + 
Ap

2

K2m
s  + 

K1C
1
Ap

2K2m

 

 

where 

K1 is the no-load flow per unit current 

K2 is the flow per unit load pressure at a constant current 

C1 is the servovalve spool current per unit displacement 

Ap is the piston cross-sectional area 

 

Determine the time-domain response y(t) of the servomotor if x is a unit step displacement applied 

at time t = 0. 

|
Vr

Vb

| 
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Figure 5:  Electrohydraulic servomotor* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Raven, F.H., “Automatic Control Engineering,” 3rd Edition, McGraw-Hill Kogakusha, 

Tokyo, 1978, p. 57, Fig. 3.7, altered 
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Various formulae (continued) 
 

2

21 
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=
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( )  sin2coscos2sin2sin −=−  602 N =  

a

sin a
 = 

b

sin b
 = 

c

sin c
 

 
 sin(a + b) = sin a cos b + cos a sin b 

 sin(a – b) = sin a cos b – cos a sin b 

 cos(a – b) = cos a cos b + sin a sin b 
 f = ω 2π⁄  

K.E. = 
1

2
mv2  

 k = ∫ EI (
d

2
ψ

dx2
)

2

dx
l

0

 

P.E. = mgh 
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 mÿ + ky  = 0 
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2 θ = 0 
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l
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 ÿ + ωn
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2
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Table of useful Laplace-transforms 
 

Function 

f(t) 

Laplace-transform 

 F(s) = 𝓛{f(t)} 

y(t) Y(s) 

ẏ(t) = 
dy(t)

dt
 sY(s) – y0 

ÿ(t) = 
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dt
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0
 

 

 f(t) = 0 for t ≠ 0;  ∫ f(t)dt
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