$\frac{\text { UNIVERSITY }}{\text { JOHANNESBURG }}$

PROGRAM	BACHELOR OF ENGINEERING MECHANICAL ENGINEERING
SUBJECT	THEORY OF MACHINES 3B
CODE	MKE3B21 / MKEMCB3
DATE	SUPPLEMENTARY EXAMINATION JANUARY 2020
DURATION	(1-PAPER) 3 HOURS
WEIGHT	$50: 50$
TOTAL MARKS	111
FULL MARKS	100
EXAMINER	Dr CR BESTER
MODERATOR	Prof AL NEL
NUMBER OF PAGES	2 PAGES INSTRUCTIONS 5 PAGES QUESTIONS 3 PAGES ANNEXURE (FORMULAE)
INSTRUCTIONS	SEE NEXT PAGE
REQUIREMENTS	NONE

INSTRUCTIONS TO CANDIDATES:

- FORMULA SHEETS ARE ATTACHED
- NO BOOKS, LECTURE NOTES, STUDY-, HOMEWORK- OR TUTORIAL MATERIAL ALLOWED
- UJ APPROVED CALCULATORS ALLOWED
- ANSWER ALL 5 QUESTIONS IN ENGLISH
- SMOKING IS PROHIBITED DURING THE DURATION OF THE EXAM

Question 1

Figure 1 shows a rigid massless lever connected to a mass m, spring with a stiffness k and damper with a viscous damping coefficient c. The total length of the lever between the spring and mass is l. The lever pivots about point A. The angular displacement of the lever and vertical displacement of the mass are θ and x respectively. The horizontal distance between the spring and pivot is a and that between the pivot and damper is b.

Derive the equations of motion of the system for both rotational- and translational coordinate systems, with θ and x as the displacement coordinates. Also calculate the undamped- and damped natural frequencies for both coordinate systems, for the following parameters:
$k: 5000 \mathrm{~N} / \mathrm{m}$
$m: 20 \mathrm{~kg}$
c: $50 \mathrm{Ns} / \mathrm{m}$
a: 100 mm
b: 200 mm
l: 400 mm

Figure 1: Rigid massless lever

Equation (1) gives an assumed deflection shape ψ_{1} of the fundamental bending mode of a guidedguided beam in terms of x / l :

$$
\psi_{1}=2\left(\frac{x}{l}\right)^{5}-5\left(\frac{x}{l}\right)^{4}+5\left(\frac{x}{l}\right)^{2}-1 \cdots \cdots(1)
$$

The modal stiffness and mass are given by:

$$
\begin{gathered}
k_{1}=\int_{0}^{l} E I\left(\frac{d^{2} \psi_{1}}{d x^{2}}\right)^{2} d x \cdots \cdots \cdot(2 \mathrm{a}) \\
m_{1}=\int_{0}^{l} \rho A \psi_{1}^{2} d x \cdots \cdots(2 \mathrm{~b})
\end{gathered}
$$

Determine the eigenvalue of the fundamental bending mode of the beam.

Question 3

A piston-powered, propeller-driven aircraft makes a vertical circular loop with a radius of 500 m (see Figure 2). The engine and propeller are directly-coupled and both run anti-clockwise at 2200 RPM, looking from aft. The tangential speed of the aircraft in the loop is constant at $200 \mathrm{~km} / \mathrm{h}$. The combined moment of inertia of the engine and propeller is $17 \mathrm{kgm}^{2}$. Determine the magnitude and direction of the gyroscopic moment of the engine and propeller acting on the aircraft, as well as the response of the aircraft to the gyroscopic effect of the engine and propeller.

Figure 2: Aircraft making a vertical loop

Question 4

Consider the schematic of a velometer shown in Figure 3. A velometer estimates the velocity V_{b} of the base from the relative velocity V_{r}, which is the difference between the velocity V of the mass and velocity V_{b} of the base.

The ratio of relative velocity to true base velocity, for harmonic base motion, is given by:

$$
\begin{equation*}
\left|\frac{V_{r}}{V_{b}}\right|=\frac{r^{2}}{\sqrt{\left(1-r^{2}\right)^{2}+(2 \zeta r)^{2}}} \tag{1}
\end{equation*}
$$

where the symbols denote the following:
$r: \quad$ Frequency ratio, i.e. ω / ω_{n}
ζ : Dimensionless damping factor
V_{r} : Relative velocity, i.e. difference between the velocity of the mass V and that of the base V_{b}
V_{b} : True velocity, i.e. velocity of the base V_{b}

Figure 4 [Figliola \& Beasley, 2011]* shows a graph of $\left|V_{r} / V_{b}\right|$ against r and dimensionless damping factor.

For any given damping factor $\zeta<1 / \sqrt{2}$, the ratio $\left|V_{r} / V_{b}\right|$ reaches a peak. For that range of damping factors, derive an equation for:
(i) the frequency ratio r where $\left|V_{r} / V_{b}\right|$ reaches a peak
(ii) the peak ratio $\left|V_{r} / V_{b}\right|$

Figure 3: Velometer

* Figliola, R.S., \& Beasley, D.E., "Theory and Design for Mechanical Measurements," $5^{\text {th }}$ Edition, John Wiley \& Sons, 2011, p. 513, Figure 12.9

Figure 4: $\left|V_{r} / V_{b}\right|$ against r and damping factor [Figliola \& Beasley, 2011]*

Question 5

(18 marks)

An electrohydraulic servomotor is schematically shown in Figure 5*. The servomotor consists of an electrohydraulic servovalve, actuator, load and rigid massless lever connecting the valve- and actuator rods.

The load mass is denoted by m. The input displacement of the lever is x, which is applied at the left end of the lever. The displacement of the valve rod is z and that of the actuator and load is y.

Consider the special case where $a=b$. For x as the input to the servomotor and y as the output, the Laplace-domain transfer function $Y(s) / X(s)$ may be given by:

$$
\frac{Y(\mathrm{~s})}{X(\mathrm{~s})}=\frac{\frac{K_{1} C_{1} A_{p}}{2 K_{2} m}}{s^{2}+\frac{A_{p}^{2}}{K_{2} m} s+\frac{K_{1} C_{1} A_{p}}{2 K_{2} m}}
$$

where
K_{1} is the no-load flow per unit current
K_{2} is the flow per unit load pressure at a constant current
C_{1} is the servovalve spool current per unit displacement
A_{p} is the piston cross-sectional area
Determine the time-domain response $y(t)$ of the servomotor if x is a unit step displacement applied at time $t=0$.

Figure 5: Electrohydraulic servomotor*

[^0]
Various formulae

$$
\begin{aligned}
& \frac{d}{d \theta}(\sec \theta)=\sec \theta \tan \theta \\
& P=m f \\
& F a=\{m f+S(x+y)\}\left(R+r_{0}\right) \sec \theta \tan \theta \\
& F a=F(\rho-R) \sin \theta \\
& F_{r}=m r \Omega^{2} \\
& F_{i x}=m_{i} r_{i} \Omega^{2} \cos \theta_{i} \\
& \sum \bar{F}+\bar{R}=\overline{0} \\
& \bar{R}=-\sum \bar{F} \\
& F_{r}=m \frac{v_{\theta}^{2}}{r}=m \frac{(r \Omega)^{2}}{r}=m r \Omega^{2} \\
& n=r / a \\
& \Omega=\dot{\theta} \\
& B b=R r \\
& x=\left(R+r_{0}\right)(\sec \theta-1) \\
& \dot{x}=\frac{d x}{d t}=\omega\left(R+r_{0}\right) \sec \theta \tan \theta \\
& \ddot{x}=\omega^{2}\left(R+r_{0}\right)\left(2 \sec ^{3} \theta-\sec \theta\right) \\
& x=(\rho-R)(1-\cos \theta) \\
& \dot{x}=\omega(\rho-R) \sin \theta \\
& \ddot{x}=\omega^{2}(\rho-R) \cos \theta \\
& x=d(1-\cos \theta) \\
& \dot{x}=\omega d \sin \theta \\
& a=\left(R+r_{0}\right) \tan \theta \\
& a=d \sin \theta \\
& l=d-R+r \\
& I_{Q}=I_{G}+\underbrace{m d^{2}}_{\text {Sleinectum }} \\
& T_{A} / T_{P}=D_{A} / D_{P} \\
& \frac{d}{d \theta}(\sec \theta \tan \theta)=2 \sec ^{3} \theta-\sec \theta \\
& F \cos \theta=m f+S(x+y) \\
& F=m f+S(x+y) \\
& F a=\{m f+S(x+y)\}(\rho-R) \sin \theta \\
& \ddot{x} \approx a \Omega^{2}\left(\cos \theta+\frac{\cos 2 \theta}{l / r}\right) \\
& F_{i y}=m_{i} r_{i} \Omega^{2} \sin \theta_{i} \\
& \bar{R}=-\sum \bar{F}=-\overline{F_{1}}-\overline{F_{2}} \\
& \bar{R}=R_{x} \bar{i}+R_{y} \bar{j} \\
& \overline{F_{i}}=F_{i x} \bar{i}+F_{i y} \bar{j} \\
& \frac{d^{2} x}{d t^{2}} \approx a \Omega^{2}\left(\cos \theta+\frac{\cos 2 \theta}{r / a}\right)=a \Omega^{2}\left(\cos \theta+\frac{\cos 2 \theta}{n}\right) \\
& P=R \frac{d^{2} x}{d t^{2}} \approx R \omega^{2} r\left(\cos \theta+\frac{\cos 2 \theta}{l / r}\right)=\underbrace{R \omega^{2} r \cos \theta}_{\text {primary ineriaia fore }}+\underbrace{\frac{R \omega^{2} r^{2}}{l} \cos 2 \theta}_{\text {secondary inetia force }} \\
& \theta=\frac{\text { totalrotation per cycle }}{\text { number of cylinders }} \\
& \tan \beta=\frac{|\overline{A B}|}{|\overline{O Q}|}=\frac{d \sin \alpha}{R+r_{0}} \\
& \ddot{x}=f=-\omega^{2} d\left(1+\frac{1}{n}\right) \\
& \rho=\frac{R^{2}-r^{2}+d^{2}-2 R d \cos \alpha}{2(R-r-d \cos \alpha)} \\
& \sin \psi=\frac{d \sin \alpha}{\rho-r} \\
& x=(d \cos \phi+r)-R \\
& \dot{x}=-\omega d \sin \phi \\
& \ddot{x}=-\omega^{2} d \cos \phi \\
& \ddot{x}=\omega^{2} d \cos \theta \\
& a=(\rho-R) \sin \theta \\
& F a=(m f+S(x+y)) d \sin \theta \\
& T=P a=\frac{m \omega^{2}}{2}(\rho-R)^{2} \sin 2 \theta \\
& D_{P}=\left(D_{A}-D_{S}\right) / 2 \\
& T_{A} / T_{S}=D_{A} / D_{S}
\end{aligned}
$$

Various formulae (continued)

$\bar{\omega}=\frac{\omega_{1}+\omega_{2}}{2}$
$\Delta E_{\max }=\frac{1}{2} I\left(\omega_{1}^{2}-\omega_{2}^{2}\right)$
$\sin (2 \theta-\phi)=\sin 2 \theta \cos \phi-\cos 2 \theta \sin \phi \quad \omega=2 \pi N / 60$
$\frac{a}{\sin a}=\frac{b}{\sin b}=\frac{c}{\sin c}$
$\sin (a-b)=\sin a \cos b-\cos a \sin b$
$\cos (a-b)=\cos a \cos b+\sin a \sin b$
$f=\omega / 2 \pi$
K.E. $=\frac{1}{2} m v^{2}$
$k=\int_{0}^{l} E I\left(\frac{d^{2} \psi}{d x^{2}}\right)^{2} d x$
P.E. $=m g h$
P.E. $=\frac{1}{2} k x^{2}$
$m \ddot{y}+k y=0$
$\ddot{\theta}+\omega_{n}^{2} \theta=0$
$I=m k^{2}$
$r=\omega / \omega_{n}$
$t_{2} N_{2}=-t_{1} N_{1}$
$T_{2} N_{2}=T_{1} N_{1}$
$\omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}}$
$\sin (a+b)=\sin a \cos b+\cos a \sin b$
$\cos (a+b)=\cos a \cos b-\sin a \sin b$
$\Delta E=\int T d \theta$
$\Delta E_{\max }=I \bar{\omega}\left(\omega_{1}-\omega_{2}\right)$
$\omega_{n}=\sqrt{k / m}$
K.E. $=\frac{1}{2} J \omega^{2}$
$m=\int_{0}^{l} \rho A \psi^{2} d x$
$J_{e q} \ddot{\theta}+k_{\theta e q} \theta=0$
$\omega_{n}=\sqrt{k_{\theta} / J}$
$v=r \omega$
$m \ddot{y}+c \dot{y}+k y=0$
$\zeta=c /\left(2 m \omega_{n}\right)=c /(2 \sqrt{\mathrm{~km}})$
$\ddot{y}+\omega_{n}^{2} y=0$
$M=I \omega \Omega$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$\Omega=V / r$

Table of useful Laplace-transforms

Function $\boldsymbol{f}(t)$	Laplace-transform $\boldsymbol{F}(\boldsymbol{s})=\boldsymbol{\mathcal { L } \{ f (t) \}}$
$y(t)$	$Y(s)$
$\dot{y}(t)=\frac{d y(t)}{d t}$	$s Y(s)-y_{0}$
$\ddot{y}(t)=\frac{d y(t)}{d t}=\frac{d^{2} y(t)}{d t^{2}}$	$s^{2} Y(s)-s y_{0}-\dot{y}_{0}$
$f(t)=0$ for $t \neq 0 ; \int_{-\infty}^{\infty} f(t) d t=1$	1
$f(t)=1$	$\frac{1}{s}$
$f(t)=t$	$\frac{1}{s^{2}}$
$f(t)=t^{2}$	$\frac{2}{s^{3}}$
$e^{a t} y(t)$	$Y(s-a)$
$e^{-\zeta \omega_{n} t}$	$\frac{1}{s+\zeta \omega_{n}}$
$\sin \omega t$	$\frac{\omega}{s^{2}+\omega^{2}}$
$\cos \omega t$	$\frac{s}{s^{2}+\omega^{2}}$
$\mathrm{e}^{-\zeta \omega_{n} t \sin \omega_{d} t}$	$\frac{\omega_{d}}{\left(s+\zeta \omega_{n}\right)^{2}+\omega_{d}^{2}}$
$\mathrm{e}^{-\zeta \omega_{n} t} \cos \omega_{d} t$	$\frac{s+\zeta \omega_{n}}{\left(s+\zeta \omega_{n}\right)^{2}+\omega_{d}^{2}}$
$t y(t)$	$-\frac{d Y(s)}{d s}$
$t \sin \omega t$	$\frac{2 \omega s}{\left(s^{2}+\omega^{2}\right)^{2}}$
$t \cos \omega t$	$\frac{s^{2}-\omega^{2}}{\left(s^{2}+\omega^{2}\right)^{2}}$

[^0]: * Raven, F.H., "Automatic Control Engineering," $3^{\text {rd }}$ Edition, McGraw-Hill Kogakusha, Tokyo, 1978, p. 57, Fig. 3.7, altered

