
University of Johannesburg

Faculty of Science

DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS

MAT0AA2

ENGINEERING MATHEMATICS 0AA2/2A2

EXAM

27 MAY 2019

Examiners: Dr. J. Mba
Dr E. Joubert

Internal Moderator: Dr. F. Schulz
Time: 120 minutes 60 marks

Surname and initials:

Student number:

Tel No.:

INSTRUCTIONS:

1. The paper consists of 10 printed pages, excluding the front page.
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Question 1 [10]
Answer the following True and False questions AND give a short justification (if True)/counterexample
(if False):

a) If A is an n× n matrix and B is obtained from A by adding 2 times the first row of A to the
third row, then det(B) = 2det(A). (2)

TRUE
FALSE

b) For every n× n matrix A, A · adj(A) = [det(A)]In, where In is the n× n identity matrix. (2)
TRUE
FALSE

c) Every subset of a vector space V that contains the zero vector in V is a subspace of V . (2)
TRUE
FALSE

d) The span of any finite set of vectors in a vector space is closed under addition and scalar
multiplication. (2)

TRUE
FALSE
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e) The set of upper triangular n × n matrices is a subspace of the vector space of all n × n
matrices. (2)

TRUE
FALSE

Question 2 [4]
For which value(s) of a does the following system have zero solutions? One solution? Infinitely
many solutions?

x1 + x2 + x3 = 4

x3 = 2

(a2 − 4)x3 = a− 2
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Question 3 [3]

a) Find a system of two linear equations in the variables x, y and z whose solutions are given
parametrically by x = 3 + t, y = t and z = 7− 2t. (2)

b) Find another parametric solution to the same system in which the parameter is r,
and x = r. (1)

Question 4 [3]
Let both A and B be n×n matrices. Prove that if A is invertible, then both A+B and I+BA−1

are invertible or both A+B and I +BA−1 are not invertible.
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Question 5 [4]
Consider the matrix

A =

 0 1 7
1 3 3
−2 −5 1

 .
Express A in the form A = EFGR, where E, F and G are elementary matrices, and R is a
row-echelon form of A.
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Question 6 [3]
Find all values of a, b, c and d for which A is skew-symmetric

A =

 0 2a− 3b+ c 3a− 5b+ 5c
−2 0 5a− 8b+ 6c
−3 −5 d

 .
[Hint: AT = −A if A is skew-symmetric.]
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Question 7 [3]
Prove that the equation of the line through the distinct points (a1, b1) and (a2, b2) can be written
as det(A)=0, where

A =

 x y 1
a1 b1 1
a2 b2 1

 .

Question 8 [3]
Consider the matrix

A =

a b c
d e f
g h i


. If it is given det(A)=−6, find the determinant of D, where

D =

 3g 3h 3i
2a+ d 2b+ e 2c+ f
d e f

 .
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Question 9 [3]
Use Cramer’s rule to solve for x′ and y′ in terms of x and y:

x = x′cosθ − y′sinθ
y = x′sinθ + y′cosθ

Question 10 [15]
Let P (2, 3,−1), Q = (−1, 2,−2) be two points and n = (1,−1, 2) be a vector in R3.

a) Find a point-normal equation of the plane P passing through the point P and having n as a
normal. (2)

b) Verify that the point Q is not on the plane P . (1)

c) Evaluate the distance between the point Q and the plane P . (2)
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d) Find parametric equations of the plane (Q) containing the point Q and the vectors
−→
QP and

n. (3)

e) Find the area of the Parallelogram determined by the vectors
−→
QP and n. (2)

f) Find a point R(x, y, z) such that the vector
−→
PR is equivalent to the vector n. (1)

g) Find Projn
−→
PQ. (2)
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h) Show that the vectors
−→
PQ,

−→
PR and

−→
RQ lie in the same plane. (2)

Question 11 [2]
Prove that the set {(a, b, c) ∈ R3 | a = −b+ 2c} is a subspace of R3.

Question 12 [7]
Let B = {(1, 0, 0), (2, 1, 0), (1, 1,−1)} be a set of vectors in R3. Let u = (2,−1, 1).

a) Verify that B spans R3. (2)
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b) Verify that B is a linearly independent set. (2)

c) Is B a basis for R3? Explain your answer. (1)

d) Find the coordinate vector of u relative to the basis B. (2)
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