
$\frac{\text { UNIVERSITY }}{\text { JOHANNESBURG }}$
Faculty of Science

DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS MAT0AA2

 ENGINEERING MATHEMATICS 0AA2/2A2EXAM

27 MAY 2019

EXAMINERS:
Internal Moderator:
Time: 120 minutes
Dr. J. Mba
Dr E. Joubert
Dr. F. Schulz
60 MARKS

SURNAME AND initials: \qquad

Student number: \qquad

Tel No.: \qquad

INSTRUCTIONS:

1. The paper consists of $\mathbf{1 0}$ printed pages, excluding the front page.
2. Answer all questions.
3. Write out all calculations (steps) and motivate all answers.
4. Read the questions carefully.
5. Questions are to be answered on the question paper in the space provided. Please indicate when the blank side of a page is used.
6. No calculators are allowed.
7. Good luck!

Answer the following True and False questions AND give a short justification (if True)/counterexample (if False):
a) If A is an $n \times n$ matrix and B is obtained from A by adding 2 times the first row of A to the third row, then $\operatorname{det}(B)=2 \operatorname{det}(A)$.

TRUE	
FALSE	

b) For every $n \times n$ matrix $A, A \cdot \operatorname{adj}(A)=[\operatorname{det}(A)] I_{n}$, where I_{n} is the $n \times n$ identity matrix. (2) | TRUE |
| :---: |
| FALSE |

c) Every subset of a vector space V that contains the zero vector in V is a subspace of V.

TRUE	
FALSE	

d) The span of any finite set of vectors in a vector space is closed under addition and scalar multiplication.

TRUE	
FALSE	

e) The set of upper triangular $n \times n$ matrices is a subspace of the vector space of all $n \times n$ matrices.

TRUE
FALSE

Question 2
For which value(s) of a does the following system have zero solutions? One solution? Infinitely many solutions?

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =4 \\
x_{3} & =2 \\
\left(a^{2}-4\right) x_{3} & =a-2
\end{aligned}
$$

a) Find a system of two linear equations in the variables x, y and z whose solutions are given parametrically by $x=3+t, y=t$ and $z=7-2 t$.
b) Find another parametric solution to the same system in which the parameter is r, and $x=r$.

Question 4
$\overline{\text { Let both } A}$ and B be $n \times n$ matrices. Prove that if A is invertible, then both $A+B$ and $I+B A^{-1}$ are invertible or both $A+B$ and $I+B A^{-1}$ are not invertible.

Question 5
Consider the matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 7 \\
1 & 3 & 3 \\
-2 & -5 & 1
\end{array}\right]
$$

Express A in the form $A=E F G R$, where E, F and G are elementary matrices, and R is a row-echelon form of A.

Question 6
Find all values of a, b, c and d for which A is skew-symmetric

$$
A=\left[\begin{array}{ccc}
0 & 2 a-3 b+c & 3 a-5 b+5 c \\
-2 & 0 & 5 a-8 b+6 c \\
-3 & -5 & d
\end{array}\right]
$$

[Hint: $A^{T}=-A$ if A is skew-symmetric.]
$\overline{\text { Prove that }}$ the equation of the line through the distinct points $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ can be written as $\operatorname{det}(A)=0$, where

$$
A=\left[\begin{array}{ccc}
x & y & 1 \\
a_{1} & b_{1} & 1 \\
a_{2} & b_{2} & 1
\end{array}\right]
$$

Question 8
Consider the matrix

$$
A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]
$$

. If it is given $\operatorname{det}(A)=-6$, find the determinant of D, where

$$
D=\left[\begin{array}{ccc}
3 g & 3 h & 3 i \\
2 a+d & 2 b+e & 2 c+f \\
d & e & f
\end{array}\right]
$$

Question 9

Use Cramer's rule to solve for x^{\prime} and y^{\prime} in terms of x and y :

$$
\begin{aligned}
& x=x^{\prime} \cos \theta-y^{\prime} \sin \theta \\
& y=x^{\prime} \sin \theta+y^{\prime} \cos \theta
\end{aligned}
$$

Question 10

$\overline{\text { Let } P(2,3,-1)}, Q=(-1,2,-2)$ be two points and $\mathbf{n}=(1,-1,2)$ be a vector in \mathbb{R}^{3}.
a) Find a point-normal equation of the plane \mathcal{P} passing through the point P and having \mathbf{n} as a normal.
b) Verify that the point Q is not on the plane \mathcal{P}.
c) Evaluate the distance between the point Q and the plane \mathcal{P}.
d) Find parametric equations of the plane (\mathcal{Q}) containing the point Q and the vectors $\overrightarrow{Q P}$ and n.
e) Find the area of the Parallelogram determined by the vectors $\overrightarrow{Q P}$ and \mathbf{n}.
f) Find a point $R(x, y, z)$ such that the vector $\overrightarrow{P R}$ is equivalent to the vector \mathbf{n}.
g) Find $\operatorname{Proj}_{\mathbf{n}} \overrightarrow{P Q}$.
h) Show that the vectors $\overrightarrow{P Q}, \overrightarrow{P R}$ and $\overrightarrow{R Q}$ lie in the same plane.

Question 11

Question 12

a) Verify that B spans \mathbb{R}^{3}.
b) Verify that B is a linearly independent set.
c) Is B a basis for \mathbb{R}^{3} ? Explain your answer.
d) Find the coordinate vector of \mathbf{u} relative to the basis B.

