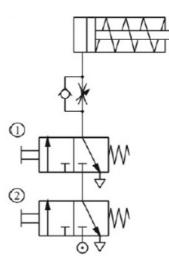


PROGRAMS	: NATIONAL DIPLOMA						
	MINING ENGINEERING						
SUBJECT	: MINE ENGINEERING 3						
CODE	: MEG3211						
ASSESSMENT	: SUPPLEMENTARY EXAM						
DATE	: 09 January 2020						
DURATION	: (SESSION 1) 08:00 - 11:00						
<u>WEIGHT</u>	: 60%						
TOTAL MARKS	: 87						
ASSESSOR:	Mr. AMULI BUKANGA						
MODERATOR:	Dr SHANIEL DAVRAJH						
NUMBER OF PAGES:							

INSTRUCTIONS


- 1. ANSWER ALL QUESTIONS.
- 2. CELLPHONES MUST BE SWITCHED OFF.
- 3. CALCULATORS ARE ALLOWED

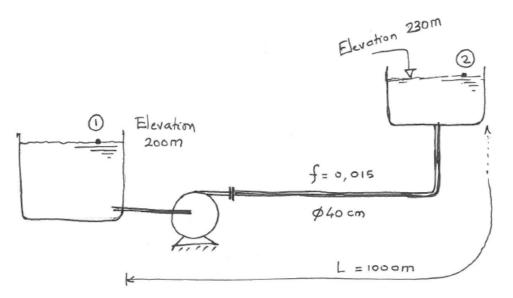
Question 1

1.1. Give any 5 uses of compressed air in underground mines (5)

(8)

1.2. Explain briefly the of the working principle pneumatic system below

Question 2


With the aid of a neat diagram explain wound rotor starting method for three-phase induction motors (8)

Question 3

Explain the working of vapour compression refrigeration system with the help of a neat sketch (8)

Question 4

Determine the discharge Q (m^3/s) for the pump whose available head vs discharge curve can be plotted using the table (see next page).

Q(m³/s)	0	0.05	0.10	0.15	0.20	0.30	0.35
Available head (m)	58.1	58.0	56.1	54.0	49.0	30.0	0

(26)

- Major loss friction factor f = 0.015
- Coefficient K (minor losses) for different fittings
- Pipe entrance $K_e = 0.5$
- Bend K_b = 0.35
- Expansion (Exit) = 1.0

Question 5

A three-phase transformer with a turns ratio of 50:1 is delta-star connected. The supply voltage is 11kV and the secondary phase current is 450A.

Calculate the:

5.1. Secondary line voltage	(4)
5.2. Primary phase voltage	(4)
5.3. Primary line current	(4)
5.4. Transformer rating	(4)

Question 6

1950 tons of crushed limestone have been transported using a conveyor belt that runs non-stop for 6 hours. Other operating data from the equipment are given in the following table:

Belt speed	1.5m/s
Friction coefficient (belt vs pulley)	
Wrap angle	225°
Incline angle	17°
Friction driving force	6.5kN
Inclined distance between loading and discharge points	
Efficiency motor of drive & pulley	

Calculate the following:

1)
)
Í)
F)
1

Formula sheet

1. Pumping system Major losses in a pipe

$$H_{\rm f} = f \frac{L}{D} \frac{V^2}{2g}$$

Where f= friction factor, L length (m), Q (flow rate), D= pipe diameter (m),

2. Conveyor belt

Power to overcome Friction

 $P_{f} = F_{\mu} \times \mathbf{v}$ $F_{\mu} = \text{developed frictional force from the pulley to drive the belt (N)}$ $\mathbf{v} = \text{belt linear speed (m/s)}$

 $\frac{\text{Belt tension ratio}}{\text{T2 / T1} = e^{\mu \Theta}}$

 μ = friction coefficient between belt and pulley θ = wrap angle