Surname: \qquad
Initials: \qquad
Student Number: \qquad

$\underline{\text { PROGRAM }}$	$:$BEng MECHANICAL ENGINEERING SCIENCE
$\underline{\text { SUBJECT }}$	$:$INTRODUCTION TO ENGINEERING DESIGN 1B
$\underline{\text { CODE }}$	$:$ IINEEB1/IIN1B21
$\underline{\text { DATE }}$	$:$SUPPLEMENTARY EXAMINATION JANUARY 2020
$\underline{\text { DURATION }}$	$: 180$ Minutes
$\underline{\text { WEIGHT }}$	$: 50: 50$
$\underline{\text { TOTAL MARKS }}$	$: 80$

EXAMINER : DR M BHAMJEE
MODERATOR : DR A MANESCHIJN
NUMBER OF PAGES : 25 PAGES (INCLUDING FORMULA SHEETS AND ROUGH WORK PAPER)

INSTRUCTIONS:

- DO NOT UNSTAPLE THESE SHEETS
- Answer all the questions
- Name and explain all assumptions where required
- Show all the steps in your calculations clearly where required
- One (1) mark per fact
- This is a Blackboard Test
- Ensure that you capture your answers on Blackboard and save regularly
- In addition, please copy the answers in the block provided on this question paper as a backup
- No answers will be graded from the hard copy
- The hard copy is a backup in the event that there is a Blackboard issue
- Rough Work Paper is provided at the end
- If you experience any errors with the Blackboard test please discuss with the head invigilators immediately.

REQUIREMENTS: ANSWER BOOKLETS

 CALCULATOR
QUESTION 1:

Explain the conditions for which each of the two theories, used to analyse friction clutches, is most applicable.

QUESTION 2:

Explain the concept of initial tension and how it is calculated.
\square

QUESTION 3:

A flange coupling between two solid shafts of 50 mm diameter each with a length of 1 m transmits 1.2 kNm of torque. The Shear modulus for the shaft is 80 GPa . The flange coupling is held together with 6 bolts on a PCD of 300 mm . The flange coupling rotates at $150 \mathrm{~min}^{-1}$. A rectangular key is used in the coupling. The shear stress in each bolt may not exceed 25 MPa and the shear stress in the key may not exceed 50 MPa . Maximum allowable compressive stress in the key is 100 MPa .

Calculate the following:
For the shaft:
$J=\square$
$\tau=\square \mathrm{m}^{4}$ (up to three decimal places)
$\theta=\square{ }^{\circ}$ (upa (up to two decimal places)
\qquad
For the key:
$t=$ \qquad mm (up to two decimal places)
$w=$ \qquad mm (up to two decimal places)

Considering failure under shear:
$L=$ \qquad mm (up to two decimal places)

Considering failure under compression:
$L=$ \qquad mm (up to two decimal places)

For the bolts:

$$
\begin{equation*}
\delta F= \tag{2}
\end{equation*}
$$

\qquad N (up to two decimal places)
$d=$ \qquad mm (up to two decimal places)

QUESTION 4:

Based on your calculations from the previous question, which length value would you use for the key? Explain why you chose this value.
\square

QUESTION 5:

The compound shaft in Figure 1. is subjected to a torque of 2 kNm . Given the following values for the moduli of rigidity:

$$
\mathrm{G}_{1}=25 \mathrm{GPa} \text { and } \mathrm{G}_{2}=80 \mathrm{GPa}
$$

Figure 1. Compound shaft.
Determine the following values:
$\boldsymbol{J}_{\mathbf{1}}=\ldots \mathbf{1 0}^{-6} \boldsymbol{m}^{4}$ (up to three decimal places)
$J_{2}=$ \qquad $\mathbf{1 0}^{-6} \boldsymbol{m}^{4}$ (up to three decimal places)
$T_{1}=$ \qquad $\boldsymbol{N m}$ (up to two decimal places)
$T_{2}=$ \qquad $\boldsymbol{N m}$ (up to two decimal places)
$\boldsymbol{\theta}=$ \qquad ${ }^{0}$ (up to two decimal places)
$\tau_{1}=$ \qquad MPa (up to two decimal places)
$\tau_{2}=$ \qquad MPa (up to two decimal places)

QUESTION 6:

What is the equilibrium and the compatibility condition for the compound shafts in Question 5 ?
\square

QUESTION 7:

The width of a frictional material on a multiple disc clutch is (R-r) and is equal to $\frac{1}{3}$ of the maximum radius (R); $\mu=[u]$. Assume uniform pressure. The maximum diameter of the coupling is not to exceed [D] mm. The axial force is [W] kN. How many discs are required to transmit $[\mathrm{P}] \mathrm{kW}$ at $[\mathrm{N}] \mathrm{min}^{-1}$?

QUESTION 8:

Explain the method you used to get to the answer in the previous question. Use formulae to aid your explanation.
\square

QUESTION 9:

A leather-covered conical clutch transmits $[\mathrm{P}] \mathrm{kW}$ at $[\mathrm{N}] \mathrm{rpm}$. The total conical angle is 20 deg. The width of the contact surface is $[\mathrm{b}] \mathrm{mm}$ and the co-efficient of friction is 0.25 . The average pressure is $[\mathrm{r}] \mathrm{kPa}$. Calculate the mean diameter in mm . (Provide the answer to two decimal places. Use . for the decimal separator and not ,)
\square

QUESTION 10:

Explain the method you used to get to the answer in the previous question. Use formulae to aid your explanation.
\square

QUESTION 11:

Given a leather V-belt belt running at speed $\mathrm{v} \mathrm{ms}^{-1}$ with maximum tension T_{1} in Newtons (N) on its tight side and minimum tension T_{2} in Newtons (N) on its slack slide. What is the equation used to calculate the power P in Watts (W) which is being transmitted by the belt? (Use * for multiply, / for divide, + for addition and - for subtraction)
\square

QUESTION 12:

An open belt drive has pulleys with diameters [D] mm and [d] mm and a pulley centre distance of [c] m. Calculate the angle of wrap on the smaller diameter pulley in radians. (Provide the answer up to two decimal places).
\square

QUESTION 13:

What is the equation that you used to obtain the answer in Question 12?
\square

QUESTION 14:

An open belt drive with a V-belt is to be designed to transmit [P] kW at [N] rpm between two pulleys, having a pulley centre distance of [c] m . The driving pulley has a dimater of [d] mm and the angle of wrap is $[\mathrm{a}]^{\circ}$. The allowable belt stress is [s$] \mathrm{MPa}$, and belts are available having a thickness-to-width ratio of [r] and a material density of $[\mathrm{p}] \mathrm{kg} / \mathrm{m} 3$. Given that the co-efficient of friction between the belt and pulleys is $[u]$ and the half-groove angle is $[B]^{\circ}$, calculate the minimum required belt width in mm . Provide the answer to two decimal places.
\square

QUESTION 15:

Explain the method you used to get to the answer in the previous question. Use formulae to aid your explanation.
\square

QUESTION 16:

Shown in Figure 2. is a three bar mechanism $\mathrm{O}_{1} \mathrm{ABO}_{2}$. For the shown position the link $\left(\mathrm{O}_{1} \mathrm{~A}\right)$ is $300 \mathrm{~min}^{-1}$ clockwise. $\mathrm{O}_{1} \mathrm{~A}=60 \mathrm{~mm}, \mathrm{AB}=180 \mathrm{~mm}, \mathrm{O}_{2} \mathrm{~B}=120 \mathrm{~mm}$. Use the following scale in your velocity diagram $\mathbf{1 m m}=\mathbf{0 . 1 8 8 5 m} / \mathrm{s}$. Provide all answers up to two decimal places. Find:

$$
\begin{align*}
& v_{a}=\ldots \mathrm{m} / \mathrm{s} \tag{5}\\
& v_{b}=\square \mathrm{m} / \mathrm{s} \\
& \omega_{a b}=\ldots \mathrm{rad} / \mathrm{s}
\end{align*}
$$

Figure 2. Three bar mechanism.

$$
\begin{aligned}
& \text { Formula sheet } \\
& \mathrm{J}=\frac{\pi R^{4}}{2} \quad \tau=\frac{F}{A_{s}} \\
& T_{1}=T_{2} \\
& \theta_{\text {Total }}=\theta_{1}+\theta_{2} \\
& \frac{T}{J}=\frac{G \theta}{L}=\frac{2 \tau}{D} \quad J=\frac{\pi\left(R^{4}-r^{4}\right)}{2} \\
& \tau=\frac{T r}{J} \\
& =\frac{2 T}{D W L} \\
& \begin{array}{c}
T_{1}+T_{2}=T \\
\theta_{1}=\theta_{2}
\end{array} \\
& P=T \times \omega \\
& P=\frac{2 \pi N T}{60} \\
& \begin{array}{c}
\tau_{d}=0.5 \times\left(\frac{\sigma_{y}}{N}\right) \\
L=\frac{2 T}{\tau_{d} D W} \\
\sigma_{d}=\frac{\sigma_{y}}{N}
\end{array} \\
& \omega=\frac{2 \pi N}{60} \\
& T=\frac{30 P}{\pi N} \\
& \begin{array}{c}
\tau_{d}=0.5 \times\left(\frac{\sigma_{y}}{N}\right) \\
L=\frac{2 T}{\tau_{d} D W} \\
\sigma_{d}=\frac{\sigma_{y}}{N}
\end{array} \\
& t=\frac{D}{6} \\
& T=n \times \delta F \times R \\
& W=\frac{D}{4} \quad \delta F=\tau_{b} \times \frac{\pi d^{2}}{4} \\
& \mathrm{~J}=\frac{\pi \mathrm{D}^{4}}{32} \\
& J=\frac{\pi\left(D^{4}-d^{4}\right)}{32} \\
& =\frac{F}{(D / 2) \times(W L)} \\
& \begin{array}{c}
\sigma=\frac{F}{A_{c}}=\frac{4 T}{D L H} \\
L=\frac{4 T}{\sigma_{d} D H}
\end{array} \\
& W=2 \pi c\left(r_{1}-r_{2}\right) \\
& T=\pi \mu c\left(r_{1}^{2}-r_{2}^{2}\right) \operatorname{cosec} \beta \\
& W=\mu p\left(r_{1}^{2}-r_{2}^{2}\right) \quad=\frac{\mu I W}{2}\left(r_{1}+r_{2}\right) \operatorname{cosec} \beta \\
& T=\frac{2}{3} \mu I W\left(\frac{r_{1}^{3}-r_{2}^{3}}{r_{1}^{2}-r_{2}^{2}}\right) \operatorname{cosec} \beta \quad T=\mu W R \operatorname{cosec} \beta
\end{aligned}
$$

$$
\begin{array}{ll}
W=p \times \pi\left(r_{1}^{2}-r_{2}^{2}\right) & W=2 \pi c\left(r_{1}-r_{2}\right) \\
T=\frac{2}{3} \pi \mu p\left(r_{1}^{3}-r_{2}^{3}\right) & T=\pi \mu c\left(r_{1}^{2}-r_{2}^{2}\right) \\
T=\frac{2}{3} \mu W\left(\frac{r_{1}^{3}-r_{2}^{3}}{r_{1}^{2}-r_{2}^{2}}\right) & T=\mu W \frac{\left(r_{1}+r_{2}\right)}{2}=\mu W R
\end{array}
$$

$\frac{T_{1}}{T_{2}}=e^{\mu \theta} \quad$ (Eitelwein's equation)

$$
\begin{equation*}
\text { Power }=\left(T_{1}-T_{2}\right) \nu,[W] \tag{14.1}
\end{equation*}
$$

$$
\sin \beta=\frac{R-r}{C}
$$

$$
\alpha_{1}=180^{\circ}-2 \beta=180^{\circ}-2 \sin ^{-1} \frac{R-r}{C},
$$

$$
\alpha_{2}=180^{\circ}+2 \beta=180^{\circ}+2 \sin ^{-1} \frac{R-r}{r}
$$

The angles of wrap for a crossed belt drive may be determined by:

$$
\begin{aligned}
\sin \beta & =\frac{R+r}{C} \\
\alpha_{1}=\alpha_{2} & =180^{\circ}+2 \beta \\
& =180^{\circ}+2 \sin ^{-1} \frac{R+r}{C}
\end{aligned}
$$

then power transmitted $=\left(T_{1}-T_{2}\right) \vee W$

$$
\begin{equation*}
=T_{1}\left(1-\frac{1}{\mathrm{e}^{\mu \theta}}\right) \nu \mathrm{W} \tag{14.4}
\end{equation*}
$$

$$
N=\frac{R}{2} \operatorname{cosec} \beta
$$

\therefore frictional resistance $=2 \mu \mathrm{~N}$
$=\mu \mathrm{R} \operatorname{cosec} \beta$

$$
\begin{gather*}
\frac{T_{1}}{T_{2}}=e^{\mu \theta \operatorname{cosec} \beta} \\
T_{c}=m \nu{ }^{2} \\
\frac{T_{1}-T_{c}}{T_{2}-T_{c}}=e^{\mu \theta} \text { or } e^{\mu \theta \operatorname{cosec} \beta} \tag{14.8}\\
\text { power }=\left(T_{1}-T_{c}\right)\left(1-\frac{1}{e^{\mu \theta}}\right) v \tag{14.9}\\
m_{\nu}^{2}=\frac{1}{3} T_{1} \\
T_{c}=\frac{1}{3} T_{1} \\
T_{1}-T_{2}=2 T_{0} \\
\frac{\sigma_{1}-m^{\prime} v^{2}}{\sigma_{2}-m^{\prime} v^{2}}=e^{\mu \theta}
\end{gather*}
$$

$$
\begin{aligned}
& \frac{T_{1}-T_{2}}{\sigma_{1}-\sigma_{2}}=\text { required cross section area } \\
& \frac{T_{1}-m v^{2}}{T_{2}-m v^{2}}=e^{\mu \theta / \sin 1 / 2 \theta}, \text { where } m=b t \rho \\
& \quad L=\frac{\pi}{2}\left(2 r_{1}+2 r_{2}\right)+2 A B+\frac{1}{4 A B}\left(2 r_{1}+2 r_{2}\right)^{2} \\
& L=r_{1}(2 \pi-2 \varphi)+r_{2}(2 \pi-2 \varphi)+2 r_{1} \tan \varphi+2 r_{2} \tan \varphi \\
& L=\frac{\pi}{2}\left(2 r_{1}+2 r_{2}\right)+2 A B+\frac{1}{4 A B}\left(2 r_{1}-2 r_{2}\right)^{2}
\end{aligned}
$$

$$
\begin{array}{lll}
& \omega=\frac{\mathrm{d} \theta}{\mathrm{~d} t}=\dot{\theta} \\
\alpha=\frac{\mathrm{d} \omega}{\mathrm{~d} t}=\dot{\omega} & \text { or } & \alpha=\frac{\mathrm{d}^{2} \theta}{d t}=\ddot{\theta} \\
\omega d \omega=\alpha d \theta & \text { or } & \dot{\theta} d \dot{\theta}=\ddot{\theta} d \theta
\end{array}
$$

$$
\omega=\omega_{0}+\infty t
$$

$$
\omega^{2}=\omega_{0}^{2}+2 \alpha\left(\theta-\theta_{0}\right)
$$

$$
\theta=\theta_{0}+\omega_{0} t+\frac{1}{2} \alpha t^{2}
$$

$$
\begin{aligned}
v & =r \omega \\
a_{n} & =r \omega^{2}=v^{2} / r=v \omega \\
a_{t} & =r \alpha
\end{aligned}
$$

$$
\left[y^{2}=2 a s\right] \quad \omega=\frac{\mathrm{d} \theta}{\mathrm{~d} t} \quad[\mathrm{rad} / \mathrm{s}]
$$

$$
\left[a_{n}=v^{2} / r\right]
$$

$$
\left[a=\sqrt{a_{n}^{2}+a_{i}^{2}}\right]
$$

$$
\mathbf{v}_{\mathrm{A}}=\mathbf{v}_{\mathrm{B}}+\mathbf{v}_{\mathrm{A} / \mathrm{B}}
$$

$$
\therefore \frac{v_{C A}}{v_{B A}}=\frac{\omega A C}{\omega A B}
$$

$$
v_{A / B}=r \omega
$$

$$
\therefore \frac{a c}{a b}=\frac{A C}{A B}
$$

ROUGH WORK PAPER:

