

Surname:	 	
Initials:	 	
Student Number:		

PROGRAM : BEng

MECHANICAL ENGINEERING SCIENCE

SUBJECT : **INTRODUCTION TO ENGINEERING**

DESIGN 1B

CODE : IINEEB1/IIN1B21

DATE : SUPPLEMENTARY EXAMINATION

JANUARY 2020

DURATION : 180 Minutes

<u>WEIGHT</u> : 50:50

TOTAL MARKS : 80

EXAMINER : DR M BHAMJEE

MODERATOR : DR A MANESCHIJN

NUMBER OF PAGES : 25 PAGES (INCLUDING FORMULA SHEETS AND

ROUGH WORK PAPER)

INSTRUCTIONS:

- DO NOT UNSTAPLE THESE SHEETS
- Answer all the questions
- Name and explain all assumptions where required
- Show all the steps in your calculations clearly where required

- One (1) mark per fact
- This is a Blackboard Test
- Ensure that you capture your answers on Blackboard and save regularly
- In addition, please copy the answers in the block provided on this question paper as a backup
- No answers will be graded from the hard copy
- The hard copy is a backup in the event that there is a Blackboard issue
- Rough Work Paper is provided at the end
- If you experience any errors with the Blackboard test please discuss with the head invigilators immediately.

REQUIREMENTS:	ANSWER BOOKLETS CALCULATOR
QUESTION 1:	[5]
Explain the conditions for whost applicable.	ich each of the two theories, used to analyse friction clutches, is (5)

INTRODUCTION TO ENGINEERING DESIGN (IIN1B21) - 3 -		
QUESTION 2:		[5]
Explain the concept of initia	l tension and how it is calculated.	(5)
QUESTION 3:		[18]
transmits 1.2 kNm of torque is held together with 6 bolts rectangular key is used in the	two solid shafts of 50 mm diameter each with The Shear modulus for the shaft is 80 GPa. The on a PCD of 300 mm. The flange coupling rotate coupling. The shear stress in each bolt may not may not exceed 50 MPa. Maximum allowable of	tes at 150 min ⁻¹ . A ot exceed 25 MPa
Calculate the following:		
For the shaft:		
$J = \tau = \underbrace{\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	m ⁴ (up to three decimal places) MPa (up to two decimal places) o (up to two decimal places)	(2) (2) (2)
For the key:		
	mm (up to two decimal places) mm (up to two decimal places)	(2) (2)
Considering failure under sh	ear:	
L =	mm (up to two decimal places)	(2)
Considering failure under co	ompression:	
L =	mm (up to two decimal places)	(2)
For the bolts:		
	N (up to two decimal places) mm (up to two decimal places)	(2) (2)

QUESTION 4: [2]

Based on your calculations from the previous question, which length value would you use for the key? Explain why you chose this value.

QUESTION 5: [7]

The compound shaft in Figure 1. is subjected to a torque of 2 kNm. Given the following values for the moduli of rigidity:

 $G_1 = 25$ GPa and $G_2 = 80$ GPa

Figure 1. Compound shaft.

Determine the following values:

$$J_1 =$$
 10⁻⁶ m^4 (up to three decimal places) (1)

$$J_2 = \underline{\qquad} 10^{-6} m^4 \text{ (up to three decimal places)}$$
 (1)

$$T_1 =$$
______ Nm (up to two decimal places) (1)

$$T_2 =$$
______ Nm (up to two decimal places) (1)

$$\theta =$$
 (1)

$ au_1 = \underline{\hspace{1cm}}$	MPa (up to two decimal places)	(1)
$ au_2 = $	MPa (up to two decimal places)	(1)
QUESTION 6:		[2]
What is the equilibriu 5?	m and the compatibility condition for the compound	shafts in Question
QUESTION 7:		[2]
maximum radius (R)	onal material on a multiple disc clutch is (R-r) and it; $\mu = [u]$. Assume uniform pressure. The maximum end [D] mm. The axial force is [W] kN. How many different min ⁻¹ ?	m diameter of the
QUESTION 8:		[5]
Explain the method your explanation.	ou used to get to the answer in the previous question.	Use formulae to

INTRODUCTION TO ENGINEERING DESIGN (IIN1B21)

- 5 -

QUESTION 9: [2]	
A leather-covered conical clutch transmits [P] kW at [N] rpm. The total conical angle is 20 deg. The width of the contact surface is [b] mm and the co-efficient of friction is 0.25. The average pressure is $[r]$ kPa. Calculate the mean diameter in mm. (Provide the answer to two decimal places. Use . for the decimal separator and not ,)	
QUESTION 10: [2]	
Explain the method you used to get to the answer in the previous question. Use formulae to aid your explanation.	
QUESTION 11: [2]	
Given a leather V-belt belt running at speed v ms ⁻¹ with maximum tension T_1 in Newtons (N) on its tight side and minimum tension T_2 in Newtons (N) on its slack slide. What is the equation used to calculate the power P in Watts (W) which is being transmitted by the belt? (Use * for multiply, / for divide, + for addition and - for subtraction)	

An open belt drive has pulleys with diameters [D] mm and [d] mm and a pulley centre distance of [c] m. Calculate the angle of wrap on the smaller diameter pulley in radians. (Provide the answer up to two decimal places).

QUESTION 12:

[2]

QUESTION 16: [15]

Shown in Figure 2. is a three bar mechanism O_1ABO_2 . For the shown position the link (O_1A) is 300 min⁻¹ clockwise. $O_1A = 60$ mm, AB = 180 mm, $O_2B = 120$ mm. Use the following scale in your velocity diagram 1mm = 0.1885m/s. Provide all answers up to two decimal places. Find:

$$v_a = \underline{\qquad \qquad m/s}$$
 (5)
 $v_b = \underline{\qquad \qquad m/s}$ (5)
 $\omega_{ab} = \underline{\qquad \qquad rad/s}$ (5)

Figure 2. Three bar mechanism.

Formula sheet	$J = \frac{\pi R^4}{2}$	$\tau = \frac{F}{A_s}$	$T_1 = T_2$
$\frac{T}{J} = \frac{G\theta}{L} = \frac{2\tau}{D}$	$J = \frac{\pi (R^4 - r^4)}{2}$	$= \frac{F}{\left(\frac{D}{2}\right) \times (WL)}$	$\theta_{Total} = \theta_1 + \theta_2$
	$\tau = \frac{Tr}{J}$	$=\frac{2T}{DWL}$	$T_1 + T_2 = T$ $\theta_1 = \theta_2$
$P = T \times \omega$ $\omega = \frac{2\pi N}{m}$	$P = \frac{2\pi NT}{60}$	$\tau_d = 0.5 \times \left(\frac{\sigma_y}{N}\right)$	1 2
$\omega = \frac{1}{60}$ $t = \frac{D}{6}$	$T = \frac{30P}{\pi N}$	$L = \frac{2T}{\tau_d DW}$	
$W = \frac{D}{4}$	$T = n \times \delta F \times R$ $\delta F = \tau_b \times \frac{\pi d^2}{\Lambda}$	$\sigma_d = \frac{\sigma_y}{N}$ $F = 4T$	
$J = \frac{\pi D^4}{32}$	$\delta F = \tau_b \times \frac{1}{4}$	$\sigma = \frac{F}{A_c} = \frac{4T}{DLH}$	
$J = \frac{\pi (D^4 - d^4)}{32}$		$L = \frac{4T}{\sigma_d DH}$	
32			

$$W = 2\pi c \left(r_1 - r_2\right)$$

$$T = \pi \mu c \left(r_1^2 - r_2^2\right) \operatorname{cosec} \beta$$

$$W = \mu p \left(r_1^2 - r_2^2\right)$$

$$T = \frac{2}{3} \mu W \left(\frac{r_1^3 - r_2^3}{r_1^2 - r_2^2}\right) \operatorname{cosec} \beta$$

$$T = \frac{2}{3} \mu W \left(\frac{r_1^3 - r_2^3}{r_1^2 - r_2^2}\right) \operatorname{cosec} \beta$$

$$T = \mu W R \operatorname{cosec} \beta$$

$$W = p \times \pi \left(r_1^2 - r_2^2\right)$$

$$T = \frac{2}{3} \pi \mu p \left(r_1^3 - r_2^3\right)$$

$$W = 2\pi c \left(r_1 - r_2\right)$$

$$T = \pi \mu c \left(r_1^2 - r_2^2\right)$$

$$T = \mu W \frac{\left(r_1^3 - r_2^3\right)}{2} = \mu W R$$

$$\frac{T_1}{T_2} = e^{\mu \theta}$$
 (Eitelwein's equation) (14.3)

Power =
$$(T_1 - T_2)\nu$$
, [W] (14.1)

$$\sin \beta = \frac{R - r}{C}$$

$$\alpha_1 = 180^\circ - 2\beta = 180^\circ - 2\sin^{-1}\frac{R - r}{C},$$

$$\alpha_2 = 180^\circ + 2\beta = 180^\circ + 2\sin^{-1}\frac{R - r}{C}$$

The angles of wrap for a crossed belt drive may be determined by:

$$\sin \beta = \frac{R+r}{C}$$

$$\alpha_1 = \alpha_2 = 180^\circ + 2\beta$$

$$= 180^\circ + 2\sin^{-1}\frac{R+r}{C}$$

then power transmitted =
$$(T_1 - T_2)\nu W$$
 (14.4)
= $T_1 \left(1 - \frac{1}{e^{\mu \theta}}\right)\nu W$ (14.5)
 $N = \frac{R}{2} \csc \beta$
 \therefore frictional resistance = $2 \mu N$
= $\mu R \csc \beta$

$$\frac{T_1}{T_2} = e^{\mu \theta} \cos c \beta$$
 (14.6)
 $T_C = m\nu^2$ (14.7)

$$\frac{T_1 - T_c}{T_2 - T_c} = e^{\mu \theta} \text{ or } e^{\mu \theta} \cos c \beta$$
 (14.8)
power = $(T_1 - T_c)\left(1 - \frac{1}{e^{\mu \theta}}\right)\nu$ (14.9)
 $m\nu^2 = \frac{1}{3}T_1$ (14.10)

$$T_{c} = \frac{1}{3}T_{1}$$
 $T_{1} - T_{2} = 2T_{0}$
 $T_{1} - T_{2} = 2T_{0}$
 $T_{2} - m'v^{2} = e^{\mu\theta}$
 $T_{3} - m'v^{2} = e^{\mu\theta}$

$$\frac{T_1 - T_2}{\sigma_1 - \sigma_2} = \text{required cross section area}$$

$$\frac{T_1 - mv^2}{T_2 - mv^2} = e^{\mu\theta/\sin\frac{1}{2}\theta}, \text{ where } m = bt\rho$$

$$L = rac{\pi}{2}(2r_1 + 2r_2) + 2AB + rac{1}{4AB}(2r_1 + 2r_2)^2$$
 $L = r_1(2\pi - 2\varphi) + r_2(2\pi - 2\varphi) + 2r_1tan\varphi + 2r_2tan\varphi$ $L = rac{\pi}{2}(2r_1 + 2r_2) + 2AB + rac{1}{4AB}(2r_1 - 2r_2)^2$

$$\omega = \frac{\mathrm{d}\theta}{\mathrm{d}t} = \dot{\theta}$$

$$\alpha = \frac{\mathrm{d}\omega}{\mathrm{d}t} = \dot{\omega}$$
 or $\alpha = \frac{\mathrm{d}^2\theta}{dt} = \ddot{\theta}$

$$\omega d\omega = \alpha d\theta$$
 or $\dot{\theta} d\dot{\theta} = \ddot{\theta} d\theta$

$$\omega = \omega_0 + \alpha t$$

$$\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0)$$

$$\theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$$

$$v = r\omega$$

$$a_n = r\omega^2 = v^2 / r = v\omega$$

$$a_i = r\alpha$$

$$\begin{bmatrix} v^2 = 2as \end{bmatrix}$$

$$\begin{bmatrix} a_n = v^2 / r \end{bmatrix}$$

$$\begin{bmatrix} a = \sqrt{a_n^2 + a_i^2} \end{bmatrix}$$

$$\therefore \frac{v_{CA}}{v_{BA}} = \frac{\omega AC}{\omega AB}$$

$$\therefore \overline{\frac{ac}{ab} = \frac{AC}{AB}}$$

$$\omega = \frac{\mathrm{d}\theta}{\mathrm{d}t} \quad [\mathrm{rad/s}]$$

$$\mathbf{V}_{A} = \mathbf{V}_{B} + \mathbf{V}_{A/B}$$

$$v_{A/B} = r\omega$$

$$\omega = \frac{v_{AB}}{AB}$$

ROUGH WORK PAPER: