

FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS MODULE MAT8X09 FUNCTIONAL ANALYSIS A CAMPUS APK ASSESSMENT EXAM PAPER 1 DATE 29/05/2019 TIME 08:30 ASSESSOR(S) DR A SWARTZ EXTERNAL MODERATOR DR L LINDEBOOM (UNISA) DURATION 3 HOURS MARKS 70

SURNAME AND INITIALS _____

STUDENT NUMBER _____

CONTACT NUMBER

NUMBER OF PAGES: 9

ANSWER ALL QUESTIONS.

Question 1 [8]

1.	Let M be a subset of a metric space X .	
	(a) What does it mean to say that M is dense in X ?	(1)
	(b) What does it mean to say that X is separable?	(1)
	(c) What does it mean to say that M is compact?	(1)
	(d) Give an example of a separable metric space.	(1)

- (e) Give an example of a metric space which is not separable. (1)
- (f) Suppose (X, d) and (Y, \tilde{d}) are metric spaces, and that $T : X \to Y$ is continuous at x_0 . Show that $x_n \to x_0 \implies Tx_n \to Tx_0$. (3)

Question 2 [10]

(a) Prove the following theorem:

A subspace M of a complete metric space X is itself complete if and only if the set M is closed in X. (5)

(b) Use the above theorem to prove that c is closed in l^{∞} .

(5)

(a) Prove the following theorem:

Every finite dimensional subspace Y of a normed space X is complete. In particular, every finite dimensional normed space is complete. (7)

(b) Prove the following lemma:

A compact subset M, of a metric space is closed and bounded. (4)

Question 4 [9]

Let $T: D(T) \to Y$ be a linear operator.

(a) Prove that N(T), the null space of T, is a vector space.

(5)

(b) Let D(T) denote the domain of T and R(T) denote the range of T.

Prove that if dim $D(T) = n < \infty$, then dim $R(T) \le n$. (4)

Question 5 [6]

(1)

Let $T: D(T) \to Y$ be a linear operator, where $D(T) \subset X$ and X, Y are normed spaces.

(a) If T is bounded, define what we mean by ||T||.

(b) Suppose that T is continuous at an arbitrary $x_0 \in D(T)$. Prove that T is bounded. (5)

Question 6 [8]

Let $a = (\alpha_1, \alpha_2, \alpha_3) \in \mathbb{R}^3$ be fixed. Let $x = (\xi_1, \xi_2, \xi_3) \in \mathbb{R}^3$. Define:

 $f:\mathbb{R}^3\to\mathbb{R}$

 as

$$f(x) = a \cdot x = \alpha_1 \xi_1 + \alpha_2 \xi_2 + \alpha_3 \xi_3$$

(a) Prove that f is linear.

(b) Prove that ||f|| = ||a||.

(4)

(4)

Question 7 [10]

(a) Let X be a vector space. Describe what we mean by an inner product on X. Show how an inner product defines a norm. Note - you do not have to prove that the definition generates a norm. (5)

(b) Let $a, b \in \mathbb{R}$. Prove that C[a, b] is not an inner product space, hence not a Hilbert space. (5)

Question 8 [8]

Prove the following lemma. For any subset $M \neq \emptyset$ of a Hilbert space H, the span of M is dense in H if and only if $M^{\perp} = \{0\}$. (8)