

PROGRAM	:	BACHELOR OF ENGINEERING TECHNOLOGY	
<u>SUBJECT</u>	:	HYDROLOGY B2	
CODE	:	HYOCIB2	
<u>DATE</u>	:	SSA EXAMINATION January 2020 (SECOND SESSION)	
DURATION	:	(Y-PAPER) 12:30-15:00	
<u>WEIGHT</u>	:	40:60	
FULL MARKS	:	100	
TOTAL MARKS	:	100	
<u>EXAMINER</u>	:	Mr. A. Vessal	SAPSE NO
MODERATOR	:	Prof . I. Musonda	FILE NO
NUMBER OF PAGES	:	4 PAGES	
INSTRUCTIONS	:	CALCULATORS ARE PERMITTED STUDENT)	(ONLY ONE PER
REQUIREMENTS	:	GRAPH PAPER, RULER	

INSTRUCTIONS TO STUDENTS:

- 1. ANSWER ALL QUESTIONS IN PEN NOT IN PENCIL
- 2. Show all your calculations to get a full mark
- 3. Return your test sheet and all loose sheets with your answer sheet to the examiner

QUESTION 1

A record of precipitation from a recording gauge for a storm for 1 hrs period is shown in the following table. Determine the gauge intensity.

time(minutes)	Gage Rainfall(mm)	Gage Intensity(mm/hr)
0	0	
20	12.5	
40	18	
60	27.5	

QUESTION 2

A large drainage basin can be divided into 4 sub basin. The areas of sub basin are 52km², 77 km². 36 km² and 69 km². The average precipitation (mm) each are 124,114,127.99, respectively. Determine the average annual precipitation in cm for the whole drainage are.

QUESTION 3

A one hr UH for a watershed is given in the following table Determine the stream flow that would result from rainfall event for this watershed. The rainfall in a 3hr storm in increment of 1.5 hr are 21 and 27 mm. The Phi index is 0.5cm/hr. The base flow is 5 m³/s.

[8]

[10]

time ,hr	Unit Hydrograph ,m^3/s
0	0
1.5	10
3	26
4.5	55
6	89
7.5	67
9	45
10.5	20
12	0

QUESTION 4

The following flood data are obtained from Wolf river.

1. Determine the 10 years flood using Log Pearson type III.

2. Compute the recurrence interval for 2001 flood (3873m^3/s) using log Normal distribution.

The K values are in annexure 1.

QUESTION 4

Route the inflow hydrograph for the following table through a river reach for x=.2 and k=8hr.

	Ι(
Time ,hr	m^3/s)	O(m^3/s)
0	12	7
3	20	
6	39	
9	67	
12	84	
15	56	
18	45	

[26]

21	34	
24	20	
27	8	

C1=	$(0.5 \times \Delta t - Kx)/K - Kx + .5\Delta t$
-----	--

C2 $(0.5 \times \Delta t + Kx)/(K - Kx + .5\Delta t)$

- C3 (K-Kx-.5Δ)t/(K-Kx+.5Δt)
- O2= C1*I2+C2*I1+C3*O1

QUESTION 5

Determine the volume of total reservoir storage for the following data.

Stage (H)m	area(hectare)	Δ storage(m^3)	Total storage (m^3)
0	0		
2	1.1		
4	3		
6	6.9		
8	12.55		

[16]

[24]

- 4 -

[TOTAL : 100]