$\frac{\text { UNIVERSITY }}{\text { JOHANNESBURG }}$

PROGRAM	BACHELOR OF ENGINEERING TECHNOLOGY ENGINEERING : CIVIL
SUBJECT	GEOTECHNICAL ENGINEERING 2B
CODE	GTECIB2
DATE	NOVEMBER EXAMINATION 23 NOVEMBER 2019
DURATION	(X-PAPER) 08:30-11:30
FULL MARKS	100
TOTAL MARKS	100
EXAMINER	PROF G C FANOURAKIS
MODERATOR	DR B A HARRISON
NUMBER OF PAGES	3 PAGES AND 5 ANNEXURES
INSTRUCTIONS	STUDENTS MAY BRING AN A4 SIZE SHEET OF PAPER
	INTO THE EXAMINATION VENUE. THIS SHEET MAY
	CONTAIN EQUATIONS / FORMULAE WHICH HAVE
	BEEN ORIGINALLY HANDWRITTEN (NOT
	PHOTOCOPIED) ON BOTH SIDES.
	PROGRAMMABLE CALCULATORS ARE PERMITTED (ONLY ONE PER STUDENT).
	WHERE RELEVANT, TAKE ACCELERATION DUE TO GRAVITY AS $10 \mathrm{~m} / \mathrm{s}^{2}$.
REQUIREMENTS	GRAPH PAPER

QUESTION 1

Briefly discuss how soil particle size distribution, shape and texture affect the permeability of a soil.

QUESTION 2

A flow net through an earth dam is shown in Figure 1 (attached).
2.1 If the dam is 100 m long and the coefficient of permeability (k) is 7 x $10^{-7} \mathrm{~m} / \mathrm{sec}$, calculate the total seepage through the dam in $\mathrm{m}^{3} / \mathrm{sec}$.
2.2 Determine the critrical hydraulic gradient $\left(i_{c}\right)$ if the soil has a dry density of $1800 \mathrm{~kg} / \mathrm{m}^{3}$ and a saturated moisture content of 20%.
2.3 Determine the water level "h" in the stand pipe shown.

QUESTION 3

A lake comprises 4 m of water overlying 5 m of clay. The clay has a unit weight (γ) of $19 \mathrm{kN} / \mathrm{m}^{3}$.
3.1 Plot the variation in total stress, pore water pressure and effective stress with depth.
3.2 What would be the value of the pore water pressures at the top and bottom of the clay layer, immediately after a drop in the water table of 2 m ?

QUESTION 4

The results of a consolidated undrained triaxial test carried out on a soil sample are given below. Assuming the cross-sectional area at failure of each specimen to have been $1414 \mathrm{~mm}^{2}$, determine the total and effective shear strength parameters of this soil.

Specimen No.	Cell Pressure (kPa)	Axial Load at Failure (N)	Pore Water Pressure (kPa)
1	67	312	20
2	167	469	80
3	267	654	135

QUESTION 5

Determine the magnitude of the resultant thrust, per unit length, acting on the gabion wall, shown in Figure 2 (attached).

QUESTION 6

Determine the factor of safety for the slope shown in Figure 3 (attached).

QUESTION 7

Figure 4 shows the plan of a rectangular foundation which transmits a uniform contact pressure of 240 kPa . Using Steinbrenner's method, and the chart provided, determine the vertical stress caused by this loading at a depth of 5 m below A.

QUESTION 8

The results of a laboratory consolidation test, on a clay, are given below.

Pressure (kPa)	Void Ratio (e)
23,94	1,112
47,88	1,105
95,76	1,080
191,52	0,985
383,04	0,850
766,08	0,731

8.1 Plot the $\mathrm{e}-\log \mathrm{P}$ curve on Figure 5 (attached).
8.2 Determine the preconsolidation pressure.

PLEASE HAND IN FIGURE 5 WITH YOUR SCRIPT

Figure 1

Figure 2

Not to Scale

Figure 4
Figure 5

b/l	0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	∞
0	0,000		0,250	0,250	0,250	0,250	0,250	0,250	0,250	0,250	0,250	0,250	0,250	0,250	0,250
0,2	0,000	0,137	0,204	0,234	0,240	0,244	0,247	0,249	0,249	0,249	0,249	0,249	0,249	0,249	0,249
0,4	0,000	0,076	0,136	0,187	0,202	0,218	0,231	0,240	0,243	0,244	0,244	0,244	0,244	0,244	0,244
0,5	0,000	0,061	0,113	0,164	0,181	0,200	0,218	0,232	0,238	0,239	0,240	0,240	0,240	0,240	0,240
0,6	0,000	0,051	0,096	0,143	0,161	0,182	0,204	0.223	0,231	0,233	0,234	0,234	0,234	0,234	0,234
0,8	0,000	0,037	0,071	0,111	0,127	0,148	0,173	0,200	0,214	0,218	0,219	0,220	0,220	0,220	0,220
1	0,000	0,028	0,055	0,087	0,101	0,120	0,145	0,175	0,194	0,200	0,202	0,203	0,204	0,205	0,205
1,2	0,000	0,022	0,043	0,069	0,081	0,098	0,121	0,152	0,173	0,182	0,185	0,187	0,189	0,189	0,189
1,4	0,000	0,018	0,035	0,056	0,066	0,080	0,101	0,131	0,154	0,164	0,169	0,171	0,174	0,174	0,174
1,5	0,000	0,016	0,031	0,051	0,060	0,073	0,092	0,121	0,145	0,156	0,161	0,164	0,166	0,167	0,167
1,6	0,000	0,014	0,028	0,046	0,055	0,067	0,085	0,112	0,135	0,148	0,154	0,157	0,160	0,160	0,160
1,8	0,000	0,012	0,024	0,039	0,046	0,056	0,072	0,097	0,121	0,133	0,140	0,143	0,147	0,148	0,148
2	0,000	0,010	0,020	0,033	0,039	0,048	0,061	0,084	0,107	0,120	0,127	0,131	0,136	0,137	0,137
2,5	0,000	0,007	0,013	0,022	0,027	0,033	0,043	0,060	0,080	0,093	0,101	0,106	0,113	0,115	0,115
3	0,000	0,005	0,010	0,016	0,019	0,024	0,031	0,045	0,061	0,073	0,081	0,087	0,096	0,099	0,099
4	0,000	0,003	0,006	0,009	0,011	0,014	0,019	0,027	0,038	0,048	0,055	0,060	0,071	0,076	0,076
5	0,000	0,002	0,004	0,006	0,007	0,009	0,012	0,018	0,026	0,033	0,039	0,043	0,055	0,061	0,062
10	0,000	0,000	0,001	0,002	0,002	0,002	0,003	0,005	0,007	0,009	0,011	0,013	0,020	0,028	0,032
15	0,000	0,000	0,000	0,001	0,001	0,001	0,001	0,002	0,003	0,004	0,005	0,006	0,010	0,016	0,021
20	0,000	0,000	0,000	0,000	0,000	0,001	0,001	0,001	0,002	0,002	0,003	0,004	0,006	0,010	0,016
50	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,001	0,001	0,002	0,006

