

| FACULTY         | : FEBE                                                 |
|-----------------|--------------------------------------------------------|
| DEPARTMENT      | : Metallurgy                                           |
| <u>CAMPUS</u>   | : DFC                                                  |
| MODULE          | : FTY 302<br>FOUNDRY TECHNOLOGY 3 – SUPPLEMENTARY EXAM |
| <u>SEMESTER</u> | : Second                                               |
| EXAM            | : January 2020                                         |

| DATE        | : TBA            | SESSION | : TBA            |
|-------------|------------------|---------|------------------|
| ASSESSOR(S) | : MR KKC KYALU   |         |                  |
| MODERATOR   | : MR I KILONGOZI |         |                  |
| DURATION    | : 3 HOURS        | MARKS   | : <b>75 (FM)</b> |

## NUMBER OF PAGES: 6 PAGES

**INSTRUCTIONS:** 

- 1. Answer ALL THE QUESTIONS.
- 2. Return the question paper

#### **QUESTION 1**

The production of a new steel casting reveals that it has a particular type of defect shown in figure 1. This casting is produced in a silica-based greensand mould. The Methoding of the casting consists of an aided feeding method using Kalmin insulator feeder sleeves and a pressurized side gating system. As the plant metallurgist, you are asked to:

- 1.1 Identify the casting defect and provide two salient features of this type of defect
  (5)
- 1.2 Fully explain the mechanism of defect formation in the case of silica sand used as the refractory sand for the mould (10)
- 1.3 Fully explain the possible effects (if any) of the following changes to the Methoding system in alleviating the casting defect problem:

| 1.3.1 | Bottom gate pouring                      | (2) |
|-------|------------------------------------------|-----|
| 1.3.2 | Increase number of feeders               | (2) |
| 1.3.3 | Increase of metal superheat              | (2) |
| 1.3.4 | Casting filtration using ceramic filters | (2) |
| 1.3.5 | Increase filling rate                    | (2) |



Figure 1 Casting defect in steel cast component

#### **QUESTION 2**

Your boss is reluctant to motivate for the purchase of X-Ray Radiography facility for the foundry. You believe that it is important for the company that supplies high tech-component for military equipment to Denel. You have been invited to make a presentation at the strategic planning of your company that takes place in Abu Dhabi to explain how this technology operates and what benefits will it provided to the company.

- 2.1 The functioning principle of the above-mentioned technologies (5)
- 2.2 What casting defects could be detected by the above analysis/ testing technologies? (5)
- 2.3 The implementation and integration of these technologies in the existing quality assessment and control system in place in the foundry (in relation to a ductile iron foundry) in order to improve the casting quality. (10)
- 2.4 Possible health and safety related issues to consider during the application of x-ray radiography. (5)

[25]

### **QUESTION 3**

Question 3 refers to the Manganese casting shown in figure 1. The Methoding data used to produce this casting are provided in Table 2.

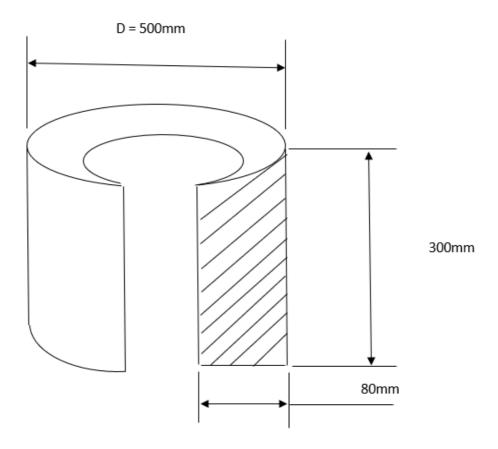



Figure 2 Technical drawing of Manganese casting

# Table 1. Data related to the Methoding system of the casting

| Casting                  |                                          |
|--------------------------|------------------------------------------|
| Casting net weight       | 200kg                                    |
| Speed Factor             | 1.5                                      |
| % Shrinkage              | 6%                                       |
| Alloy density            | 7.85 kg/dm <sup>3</sup>                  |
| Moulding                 | Greensand moulding (chromite sand based) |
|                          | Vertical moulding                        |
| Feeding system           |                                          |
| Aided feeding            | RMS sleeves                              |
| Dimensions (h, d)        | h = d                                    |
| Modulus Extension factor | m.e.f: 1.5                               |
|                          |                                          |
| Pouring temperature      | 1480 ºC                                  |

| 3.1   | Based on your calculations, is this casting a plate or a bar?                                 | (5)       |
|-------|-----------------------------------------------------------------------------------------------|-----------|
| 3.2   | Calculate the modulus of the casting                                                          | (5)       |
| 3.3   | With D=H, for an RMS cylindrical sleeve with a m.e.f of 1.5, calculate th sizes of the sleeve | ne<br>(5) |
| 3.4   | How many sleeves will you require if no chills are used?                                      | (5)       |
| 3.5   | How many sleeves will you require if chills are used?                                         | (5)       |
| 3.6   | If the pouring weight is 250kg for the above casting                                          |           |
| 3.6.1 | Will your running system be pressurised or not?                                               | (2)       |
|       |                                                                                               |           |

| 3.6.2 | Calculate the sizes of your Down gate, the Runner Bar and the Ingates if 2 |     |      |
|-------|----------------------------------------------------------------------------|-----|------|
|       | Ingates will be used                                                       | (9) |      |
| 3.6.3 | What will the mould filling or pouring time be?                            | (4) |      |
|       |                                                                            |     | [40] |
|       |                                                                            |     |      |
|       |                                                                            |     |      |